Chaos in cubic-quintic nonlinear oscillator Patanjali Sharma¹ and V. G. Gupta² ¹Dept. of Mathematics, Banasthali University, Banasthali 304 022

 $^{2}\mathrm{Dept.}$ of Mathematics, University of Rajasthan, Jaipur 302004

Abstract

In this paper, we used Hamiltonian formulation and Lie transform to investigate a strongly nonlinear oscillator. Using Chirikovâ soverlap criterion we find the value of ε_{cr} at which the chaos loses its local character and becomes global. The results of Lie transformation analysis and Chirikovâ scriteria for the oscillator are compared with numerically generated Poincare Maps.

References

 Chirikov, B.V., A Universal Instability of Many-Dimensional Oscillator Systems, Physics Reports 52 1979, 265-376.

[2] Deprit, A., Canonical Transformations Depending on a Small Parameter, Celestial Mechanics, 1 1969, 12-30.

[3] Goldstein, H., Poole, C., and Safko, J., Classical Mechanics, Third Edition, Pearson Education, Inc., 2004.

[4] Kamel, A. A., Perturbation Theory Based on Lie Transforms, NASA Contractor Report CR-1622 (1970).

[5] N. Abouhazim, B. Mohamed and R. H. Rand, Two models for the parametric forcing of a nonlinear oscillator, Nonlinear Dynamics, 50, 2007, 147-160.

[6] Rand, R. H., Topics in Nonlinear Dynamics with Computer Algebra, Gordon and Breach, Langhorne, PA, 1994.

[7] Zounes, R. S. and Rand, R. H., Global Behavior of a Nonlinear Quasiperiodic Mathieu Equation, Nonlinear Dynamics, 27, 2002, 87-105.