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Shadowing in the parabolic equations

Piskarev S.

Lomonosov Moscow State University

piskarev@gmail.com

This talk is devoted to the numerical analysis of abstract semilinear parabolic problem

u′(t) = Au(t) + f(u(t)), u(0) = u0, in some general Banach space E. We are developing

a general approach to establish the discrete dichotomy in a very general setting and

prove shadowing Theorems that compare solutions of the continuous problem with those

of discrete approximation in time. It is well-known fact that the phase space in the

neighborhood of the hyperbolic equilibrium can be split in a such way that the original

initial value problem is reduced to initial value problems with exponential decaying solu-

tions in opposite time direction. We use the theory of compact approximation principle

and collectively condensing approximation to show that such a decomposition of the

�ow persists under rather general approximation schemes. The main assumption of our

results are naturally satis�ed, in particular, for operators with compact resolvents and

condensing semigroups and can be veri�ed for �nite element as well as �nite di�erence

methods.
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Fractals arising from Newton’s method

Abstract. The aim of this talk is to introduce the concept of fractals arising from Newton’s
method. We consider the dynamics as a special class of rational functions that are obtained
from Newton’s method when applied to a polynomial equation. Finding solutions of these
equations leads to some beautiful images in complex functions. These images represent the
basins of attraction of roots of complex functions. If z0 is an attracting periodic point of
some rational function of degree larger that one, its basin of attraction is as follows:

B(z0) := {z ∈ C |Nf
n(z0) converges to z0, n→∞}.

The basin of attraction B(z0) is a union of components of the Fatou set, and the boundary
of B(z0) coincides with the Julia sets of a rational function Nf . In this presentation, we seek
will the answer of the following question:

“What is the dynamics near the chosen parabolic fixed points?”

For example,

f(z) = (z2 + 4)ez the Newton function of f is Nf (z) = z3+z2+4z−z
z2+2z+4

and the fractal image of that function on Riemann sphere is pre-
sented.
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On the Classifications of C∗-Algebras Using Unitary Groups

Ahmed Al-Rawashdeh

Department of Mathematical Sciences, UAEU, Al Ain

United Arab Emirates

Abstract

In 1955, Dye proved that the discrete unitary group in a factor determines the algebraic type of the

factor. Using Dye’s approach, we prove similar results to a larger class of amenable unital C∗-algebras

including simple unital AH-algebras (of SDG) with real rank zero. If φ is an isomorphism between the

unitary groups of two unital C∗-algebras, it induces a bijective map θφ between the sets of projections of

the algebras. For some UHF-algebras, we construct an automorphism φ of their unitary group, such that

θφ does not preserve the orthogonality of projections. For a large class of unital C∗-algebras, we show that

θφ is always an orthoisomorphism. This class includes in particular the Cuntz algebras On, 2 ≤ n ≤ ∞,

and the simple unital AF-algebras having 2-divisible K0-group. If φ is a continuous automorphism of

the unitary group of a UHF-algebra A, we show that φ is implemented by a linear or a conjugate linear

∗-automorphism of A.
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Solution of One Problem for the Equation of Parabolic type
with Involution Perturbation

Abdisalam A.Sarsenbi∗ and A.A. Tengaeva†

∗M.Auezov South-Kazakhstan State University, Shymkent, Kazakhstan, abzhahan@mail.ru
†M.Auezov South-Kazakhstan State University, Shymkent, Kazakhstan, aijan0973@mail.ru

Abstract. In the domain D = {(x, t) :−1 < x < 1,0 < t < T} the following problem is considered: Obtain the solution
u ∈C2,1(D)∩C(D) of the equation

ut(x, t) = uxx(−x, t)−αuxx(x, t), (1)

which satisfies the conditions

u(x,0) = ϕ(x),−1≤ x≤ 1;u(−1, t) = 0,u(1, t) = 0,0≤ t ≤ T,ϕ(−1) = 0,ϕ(1) = 0. (2)

Application of the Fourier method gives the spectral problem of the form

−X ′′(−x)+αX ′′(x) = λX(x),−1 < x < 1,X(−1) = 0,X(1) = 0. (3)

The system of eigenfunctions of (3) is generated Riesz basis in L2(−1,1).
Theorem 1. If α is real number α and |α|> 1, then the problem (1)-(2) has a unique solution.
Theorem 2. If α is a complex number and |Reα| ≥ 1, then the problem (1)-(2) has a unique solution.
Moreover, we have the following formula

u(x, t) =
∞

∑
k=0

cke(1−α)( π

2 +kπ)2t cos(
π

2
+ kπ)x+

∞

∑
k=1

dke−(1+α)(kπ)2t sinkπx.

Many papers are devoted to investigation of partial differential equations and spectral problems of differential operators
with involution see, for example, [1-4].

Keywords: Spectral of Problems, Differential Operators with involutions, Exact Solutions, Fourier Series
PACS: 87.10.Ed
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A Note on the Numerical Solution of Fractional Schrödinger Di¤erential Equations
A. Ashyralyev1;2, B. Hicdurmaz3;4

1Department of Mathematics, Fatih University, 34500 Buyukcekmece, Istanbul, Turkey 2International

Turkmen-Turkish University, Ashgabat, Turkmenistan 3Department of Mathematics, Faculty of

Sciences, Istanbul Medeniyet University, 34720 Istanbul, Turkey 4Department of Mathematics, Gebze

Institute of Technology, Kocaeli, Turkey

Abstract

Many di¤erent equations are called by fractional Schrödinger di¤erential equation (FSDE) until today.

In recent years, the FSDE which is derived from classical Schrödinger di¤erential equation has received

more attention. This problem is solved by some numerical methods (see [2]-[5]). However, �nite di¤erence

method which is a useful tool for investigation of fractional di¤erential equations has not been applied

to a FSDE yet. The present paper �lls a gap by applying �nite di¤erence method to the following

multi-dimensional linear FSDE

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

i@
�u(t;x)
@t� �

mP
r=1
(ar(x)uxr )xr + �u(t; x) = f(t; x);

0 < t < 1; x = (x1; � � �; xm) 2 
;

u(0; x) = 0; x 2 
;

u(t; x) = 0; x 2 S

(1)

where 0 < � < 1. Here ar(x); x 2 
 and f(t; x) (t 2 [0; 1]; x 2 
) are given smooth functions and

ar(x) � a � 0: First and second orders of accuracy di¤erence schemes are constructed for problem (1).

Numerical experiment on a one-dimensional FSDE shows the e¤ectiveness of the di¤erence schemes.
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On Bitsadze-Samarskii type nonlocal boundary value problems for semilinear elliptic

equations
A. Ashyralyev1, E. Ozturk2

1Department of Mathematics, Fatih University, Istanbul, Turkey 2Department of Mathematics, Uludag

University, Bursa, Turkey

Abstract

In the literature, the problem of Bitsadze-Samarskii type is often referred to as the boundary value

problem with Bitsadze-Samarskii condition (see [2], [4] and [7]). Previously, the Bitsadze-Samarskii type

nonlocal boundary value problems for linear elliptic equations were studied ([5]). In this paper, the

Bitsadze-Samarskii type nonlocal boundary value problems for semilinear elliptic equations

8>>>>><>>>>>:

�d2u(t)
dt2 +Au(t) = f(t; u(t)); 0 < t < 1;

u(0) = '; u(1) =
JP
j=1

�ju(�j) +  ;

0 < �1 < � � � < �J < 1;
JP
j=1

j�j j � 1

in a Hilbert space H with the self-adjoint positive de�nite operator A is considered. The �rst and second

orders of accuracy di¤erence schemes approximately solving these problems are studied. A procedure of

modi�ed Gauss elimination method is used for solving these di¤erence schemes for the two-dimensional

elliptic di¤erential equation. The method is illustrated by numerical examples. The converge estimates

for the solution of these di¤erence schemes are obtained.
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A Third-Order of Accuracy Difference Scheme

for the Bitsadze-Samarskii Type Nonlocal Boundary Value Problem

A. Ashyralyev1,2, F. S. Ozesenli Tetikoglu1

1Department of Mathematics, Fatih University, Istanbul, Turkey

2Department of Mathematics, ITTU, Ashgabat, Turkmenistan

Abstract

The role played by coercive inequalities in the study of local boundary-value problems for elliptic and

parabolic differential equations is well-known ([1], [2]). Theory, applications and methods of solutions of

Bitsadze-Samarskii nonlocal boundary value problems for elliptic differential equations have been studied

extensively by many researchers ([3]-[5]). The Bitsadze-Samarskii type nonlocal boundary value problem



−d2u(t)
dt2 +Au(t) = f(t), 0 < t < 1,

ut(0) = ϕ, ut(1) = βut(λ) + ψ,

0 ≤ λ < 1, |β| ≤ 1

for the differential equation in a Hilbert space H with the self-adjoint positive definite operator A is

considered. The third order of accuracy difference scheme for the approximate solution of this problem

is presented. The well-posedness of this difference scheme in difference analogue of Hölder spaces is

established. In applications, the stability, the almost coercivity and the coercivity estimates for solution

of difference scheme for elliptic equations are obtained.

References

[1] V. L. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Dierential - Operator Equations,

Naukova Dumka, Kiev, 1984 (in Russian).

[2] G. Berikelashvili, ”On a nonlocal boundary value problem for a two-dimensional elliptic equation”,

Comput. Methods Appl. Math. 3, no.1, pp. 35-44, 2003.

[3] A.V. Bitsadze, A. A. Samarskii, ”On some simplest generalizations of linear elliptic problems”,

Dokl. Akad. Nauk SSSR 185, 1969.

[4] A. Ashyralyev, ”Nonlocal boundary-value problems for elliptic equations: Well- posedness in

Bochner spaces”, Conference Proceedings, ICMS International Con- ference on Mathematical Science,

vol. 1309, pp. 66-85, 2010.

[5] A. Ashyralyev, ”On well-posedness of the nonlocal boundary value problem for el- liptic equations”,

Numerical Functional Analysis and Optimization, vol. 24, no.1-2, pp. 1-15, 2009.

Page 7



NBVP for Hyperbolic Equations Involving Multi-point and Integral Conditions
A. Ashyralyev1;N. Aggez1

1Department of Mathematics, Fatih University, 34500 Istanbul, Turkey

Abstract

Nonlocal boundary value problems involving multi-point and integral conditions for a hyperbolic

equation in a Hilbert space are investigated. The stability estimates for the solution of these

multi-point NBVP are established. In applications, the stability estimates for the solution of these

problems are obtained.

The authors of [3] developed a numerical procedure for the NBVP with a integral conditions for hyper-

bolic equations. In the paper [4], instead of nonlocal integral conditions multi-point nonlocal conditions

used. In the present work, we consider the NBVP with multi-point and integral conditions

8>>>>><>>>>>:

d2u(t)
dt2 +Au(t) = f(t) (0 � t � 1);

u(0) =
1R
0

� (�)u(�)d�+
nP
i=1

aiu(�i) + ';

ut(0) =
1R
0

� (�)ut(�)d�+
nP
i=1

biut(�i) +  

(1)

for the di¤erential equation in a Hilbert space H with a self-adjoint positive de�nite operator A. We are

interested in studying the stability of solutions of problem (1) under the assumption������1 +
1Z
0

�(s)� (s) ds+

nX
k=1

akbk +

nX
k=1

ak

1Z
0

� (s) ds+

nX
k=1

bk

1Z
0

�(s)ds

������ (2)

>

1Z
0

(j�(s)j+ j� (s)j) ds+
nX
k=1

jak + bkj :

A function u(t) is a solution of problem (1) if the following conditions are satis�ed:

i) u(t) is twice continuously di¤erentiable on the interval (0; 1) and continuously di¤erentiable on

the segment [0; 1]. The derivatives at the endpoints of the segment are understood as the appropriate

unilateral derivatives.

ii) The element u(t) belongs to D(A) for all t 2 [0; 1], and function Au(t) is continuous on the segment

[0; 1].

iii) u(t) satis�es the equation and nonlocal boundary conditions (1).
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Boundary Value Problem for a Third Order Partial Di¤erential Equation
A. Ashyralyev1; N. Aggez1; F. Hezenci1

1Department of Mathematics, Fatih University, 34500 Istanbul, Turkey

Abstract. Boundary value problems for third order partial di¤erential equations in a Hilbert space

are investigated. The stability estimates for the solution of the boundary value problem is established.

To validate the main result, some stability estimates for solutions of the boundary value problems for

third order equations are given. Here, the boundary value problem

8<:
d3u(t)
dt3 �Au(t) = f(t); 0 < t < 1;

u(0) = '; ut(0) =  ; utt(1) = �;
(1)

for a third order partial di¤erential equation in a Hilbert space H with a self-adjoint positive de�nite

operator A is considered. We are interested in studying the stability of solutions of problem (1).

A function u(t) is a solution of problem (1) if the following conditions are satis�ed:

i) u(t) is three times continuously di¤erentiable on the interval (0; 1) and continuously di¤erentiable

on the segment [0; 1]. The derivatives at the endpoints of the segment are understood as the appropriate

unilateral derivatives.

ii) The element u(t) belongs to D(A) for all t 2 [0; 1], and function Au(t) is continuous on the segment

[0; 1].

iii) u(t) satis�es the equation and boundary conditions (1).
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Fractional Parabolic Differential and Difference Equations with the Dirichlet-Neumann

Condition

A. Ashyralyev1, N. Emirov1 and Z. Cakir2

1Department of Mathematics, Fatih University, Istanbul, Turkey 2Department of Mathematical

Engineering, Gumushane University,Gumushane, Turkey

Abstract

The multidimensional fractional parabolic equation with the Dirichlet-Neumann condition is studied.

Stability estimates for the solution of the initial-boundary value problem for this fractional parabolic

equation are established. The stable difference schemes for this problem are presented. Stability estimates

for the solution of the first order of accuracy difference scheme are obtained. A procedure of modified

Gauss elimination method is applied for the solution of first and second order of accuracy difference

schemes of one-dimensional fractional parabolic differential equations.
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High Order of Accuracy Stable Di¤erence Schemes for Numerical

Solutions of NBVP for Hyperbolic Equations
A. Ashyralyev1, O. Yildirim2

1Department of Mathematics, Fatih University, Istanbul, Turkey 2Department of Mathematics, Yildiz

Technical University, Istanbul, Turkey

Abstract

The abstract nonlocal boundary value problem for the hyperbolic equation8<: u
00
(t) +Au (t) = f (t) ; 0 < t < T;

u(0) = �u(1) + '; u0(0) = �u0(1) +  

in a Hilbert space H with the self -adjoint positive de�nite operator A is considered. The third and

fourth order of accuracy di¤erence schemes for the approximate solutions of this problem are presented.

The stability estimates for the solutions of these di¤erence schemes are obtained and numerical results

are presented in order to verify theoretical statements.
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Positivity of Two-dimensional Elliptic Differential Operators in Hölder Spaces

A. Ashyralyev1, S. Akturk1 and Y. Sozen1

1Department of Mathematics, Fatih University, Istanbul, Turkey

Abstract

This paper considers the following operator

Au(t, x) = −a11(t, x)utt(t, x)− a22(t, x)uxx(t, x) + σu(t, x),

defined over the region R+ × R with the boundary condition u(0, x) = 0, x ∈ R. Here, the coefficients

aii(t, x), i = 1, 2 are continuously differentiable and satisfy the uniform ellipticity

a211(t, x) + a222(t, x) ≥ δ > 0,

and σ > 0. It investigates the structure of the fractional spaces generated by this operator. Moreover,

the positivity of the operator in Hölder spaces is proved.
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On the Numerical Solution of Ultra Parabolic Equations with Neumann Condition
A. Ashyralyev and S. Yılmaz

Department of Mathematics, Fatih University, Istanbul, Turkey

Abstract

In this paper, our interest is studying the stability of first order difference scheme for the approximate

solution of the initial boundary value problem for ultra parabolic equations


∂u(t,s)
∂t +∂u(t,s)

∂s +Au(t, s) = f(t, s), 0 < t, s < T,

u(0, s) = ψ(s), 0 ≤ s ≤ T,

u(t, 0) = ϕ(t), 0 ≤ t ≤ T

(1)

in an arbitrary Banach space E with a strongly positive operator A.We refer to [1, 2] and the references

therein for a series of papers by the authors, dealing with ultra parabolic equations , arising in diffusion

theory, probability and finance. Some new results about numerical methods for ultra-parabolic equations

are also announced, see [3-5]. For approximately solving problem (1), the first-order of accuracy difference

scheme



uk,m−uk−1,m
τ +

uk−1,m−uk−1,m−1
τ +Auk,m = fk,m ,

fk,m = f(tk, sm), tk = kτ, sm = mτ, 1 ≤ k,m ≤ N, Nτ = 1,

u0,m = ψm, ψm = ψ(sm), 0 ≤ m ≤ N,

uk,0 = ϕk, ϕk = ϕ(tk), 0 ≤ k ≤ N

(2)

is presented. The stability estimates and almost coercive stability estimates for the solution of difference

schemes (2) is established. In applications, the stability in maximum norm of difference shemes for mul-

tidimensional ultra parabolic equations with Neumann condition is established. Applying the difference

schemes, the numerical methods are proposed for solving one dimensional ultra parabolic equations.
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Existence and Uniqueness of Solutions for Nonlinear Impulsive Differential Equations with Two-point

and Integral Boundary Conditions
A. Ashyralyev1 and Y.A. Sharifov2

1Department of Mathematics, Fatih University, Istanbul, Turkey

2Baku State University, Institute of Cybernetics of ANAS, Baku, Azerbaijan

Abstract

The theory of impulsive differential equations is an important branch of differential equations, which

has an extensive physical background. Impulsive differential equations arise frequently in the modeling

many physical systems whose states are subjects to sudden change at certain moments. There has a

significant development in impulsive theory especially in the area of impulsive differential equations with

fixed moments; see for instance the monographs [1-4] the references therein.

In this paper, the suffi cient conditions are established for the existence of solutions for a class of

two-point and integral boundary value problems for impulsive differential equations.
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Optimal Control Problem for Impulsive Systems with Integral Boundary Conditions
A. Ashyralyev1 and Y.A. Sharifov2

1Department of Mathematics, Fatih University, Istanbul, Turkey

2Baku State University, Institute of Cybernetics of ANAS, Baku, Azerbaijan

Abstract

Impulsive differential equations have become important in recent years as mathematical models of

phenomena in both physical and social sciences. There is a significant development in impulsive the-

ory especially in the area of impulsive differential equations with fixed moments; see for instance the

monographs [1-4] and the references therein.

Many of the physical systems can be described better by integral boundary conditions. Integral

boundary conditions are encountered in various applications such as population dynamics, blood flow

models, chemical engineering and cellular systems. Moreover, boundary value problems with integral

conditions constitute a very interesting and important class of problems. They include two, three, multi

and nonlocal boundary value problems as special cases, (see [5-7]). For boundary value problems with

nonlocal boundary conditions and comments on their importance, we refer the reader to the papers [8-10]

and the references therein.

In this paper the optimal control problem is considered, when the state of the system is described

by the impulsive differential equations with integral boundary conditions. By the help of the Banach

contraction principle the existence and uniqueness of solution is proved for the corresponding boundary

problem by the fixed admissible control. The first and the second variation of the functional is calculated.

Various necessary conditions of optimality of the first and the second order are obtained by the help of

the variation of the controls.
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On Stability Of Hyperbolic- Elliptic Differential Equations With Nonlocal Integral

Condition

A. Ashyralyev1,2, Z. Ödemiş Özger1 and F. Özger1

1Department of Mathematics, Fatih University, Istanbul, Turkey 2Department of Mathematics, ITT

University 74400, Ashgabat, Turkmenistan

Abstract

The nonlocal boundary value problem for a hyperbolic-elliptic equation
utt(t) +Au(t) = f(t), 0 ≤ t ≤ 1,

−utt(t) +Au(t) = g(t), − 1 ≤ t ≤ 0,

u(−1) =
1∫
0

α(s)u(s)ds+ ψ, u(0) = ϕ.

in a Hilbert space H with the self-adjoint positive definite operator A is considered. The stability

estimates for the solution of this problem are established.
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FUZZY CONTINUOUS DYNAMICAL SYSTEM: A

MULTIVARIATE OPTIMIZATION TECHNIQUE
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Abstract

This paper presents a multivariate optimization technique for the numerical simulation of contin-

uous dynamical systems whose parameters, functional forms and/or initial conditions are modeled by

fuzzy distributions. Fuzzy differential equation (FDE) is interpreted by using the strongly generalized

differentiability concept and is shown that by this concept any FDE can be transformed to a system of

ordinary differential equations (ODEs). By solving the associate ODEs one can find solutions for FDE.

This approach has an inherited drawback of increasing uncertainty at each instance of time generally with

nonlinear functional forms. Here we present a methodology to numerically simulate interval calculus and

implements a new approach to the numerical integration of fuzzy dynamical systems, where the propa-

gation of imprecision as a fuzzy distribution in the phase space is solved by a constrained multivariate

optimization technique. Numerical simulations of some fuzzy dynamical systems (viz. Lotka Volterra

model, Lorenz model) are also reported. Finally ecological degradation in wetlands of India is modeled

by fuzzy initial value problem and some sustainable solution is proposed.
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Abstract

Explorations of ecological networks have led a long line of scientists to debate the influence of diversity

(number of nodes) in terms of species richness and complexity in terms of the number and structure of

interactions. This research on how vast numbers of interacting species manage to coexist in nature

reveals a deep disparity between the ubiquity of complex ecosystems in nature and their mathematical

improbability in theory. In this paper ecological networks are assumed to be complex dynamical network.

Population dynamics is simulated over ecological complex network and species migration and changing

food habits are found to be two keystones to species persistence on the earth. Also a comparative study

on stability, complexity and persistence over complex dynamical network is shown. Here, we show how

integrating models of food-web structure and nonlinear bioenergetic dynamics bridges this disparity and

helps elucidate the mechanics of ecological complexity. Structural constraints of these networks including

the trophic hierarchy, contiguity, and looping formalized by the “niche model” are shown to greatly

increase persistence in complex model ecosystems. We explore the interplay of structure and nonlinear

dynamics by systematically varying diversity, complexity, and function in order to “elucidate the devious

strategies which make for stability in enduring natural systems.” ([19]). Our exploration expands on

previously proposed strategies and shows how recently discovered structural and functional properties of

ecological networks appear to promote stability and persistence in large complex ecosystems.
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Abstract 

In this paper we provide a new analytical solution for residual drawdown during the recovery 

period after constant rate pumping test. We first compare the proposed solution with the existing 

solution, secondary we compare the solution with experimental data from field observation. The 

analytical solution is in perfect agreement with the experimental data for  than Cooper 

Jacob solution. We derive a new analytical solution for determination of the skin factor without 

any restriction on the variables t and t
,
. We present an analytical solution for the drawdown 

response in a confined aquifer that is pumped step-wise or intermittently at different discharge 

rate on basis of this solution we derive an analytical solution to analyse the residual drawdown 

data after pumping test with step-wise or intermittently changing discharge rates. 

Keywords: Recovery equations, residual drawdown, skin factor, Variable discharges 
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Abstract

In this paper, by using a solitary wave ansatz in the form of sechp and tanhp

functions, we obtain the exact bright (non-topological) and dark (topological)
soliton solutions for the variable coe¢ cient generalizations of the KP (GVCKP)
equation, respectively. Note that, it is always useful and desirable to construct
exact analytical solutions especially soliton-type envelope for the understanding
of most nonlinear physical phenomena. The physical parameters in the soliton
solutions are obtained as functions of the dependent coe¢ cients.

Keywords: Solitons, bright and dark soliton, variable-coe¢ cient general-

izations of the KP (GVCKP) equation

PACS (2006) : 02.30 Jr, 02.70 Wz, 05.45 Yv, 94.05 Fg.
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A Characterization of Compactness in Banach Spaces with Continuous Linear

Representations of the Rotation Group of a Circle.
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Abstract

Let H be a complex Banach space, T be the unit circle {z ∈ C : |z| = 1}, SO(2) be the group of all

rotations of T, GL(H) be group of all invertible bounded linear operators on H, α : SO(2)→ GL(H) be

a continuous linear representation, x ∈ H. For all n ∈ Z, n-th Fourier coefficient of x with respect to the

α is defined by

Pn(x) =
1

2π

∫
T
e−intα(t)(x)dt

and the Fourier series of x with respect to the α is defined by

+∞∑
n=−∞

Pn(x). (1)

The convergence of this series and some properties of Pn(x) are investigated in [5]. In this work, a

characterization of compactness in Banach space H is given by means of Fourier coefficients Pn(x). One

of the main results is as follows:

Theorem :Suppose that dimHn < +∞ for all n ∈ Z. Then a closed subset A ⊂ H is compact if and

only if for any ε > 0 there exists a natural number N(ε) such that‖ n
n+1σn(x)− x‖ < ε for all x ∈ A and

n ≥ N(ε).

Where, for all n ∈ N ∪ {0}, σn(.) : H→ H is a linear bounded operator which is defined by

σn(x) =
1

n+ 1

n∑
k=0

Sk(x)

for all x ∈ H, Sk(x) is the k-th partial sum of (1) for all k ∈ N ∪ {0} and

Hn := {x ∈ H : α(t)(x) = eintx,∀t ∈ T}

for all n ∈ Z.
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Abstract

In this study we investigate the linear Goursat problems that arise in linear partial di¤erential equa-

tions with mixed derivatives. The standart form of Goursat Problem is given by

uxt = f(x; t; u; ux; ut); 0 6 x 6 a; 0 6 t 6 b;

u (x; 0) = g(x); u(0; t) = h(t);

u(0; 0) = g(0) = h(0):

The aim of this work is to present an e¢ cient numerical procedure, namely Homotopy Analysis Method,

for solving homogeneous and inhomogeneous linear Goursat problems. The reliability and e¢ ciency of

the proposed method are demonstrated by some numerical examples and performed on the computer

algebraic system Mathematica 7.
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[4] Y¬ld¬r¬m, A., Odabaş¬, M., The homotopy perturbation method for solving the linear and the

nonlinear Goursat problems, International Journal For Numerical Methods In Biomedical Engineering,

27 (2011), 1139�1148.

Page 30



Paths of Minimal Length on Suborbital Graphs with Recurrence Relations
A.H. Deger1, M. Besenk 1 and B.O. Guler1

1Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey

Abstract

In this paper, we study suborbital graphs for congruence subgroup Γ0 (N) of the modular group Γ to

have vertices of the graph Fu,N and hyperbolic paths of minimal length with recurrence relations give

rise to a special continued fraction.
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Abstract

We consider a Sturm-Liouville equation together with eigendependent boundary conditions and two

supplementary transmission condition at the one inner point. Note that some special cases of the con-

sidered problem arise after an application of the method of separation of variables to the heat transfer

problems, in vibrating string problems when the string is loaded additionally with point masses, in dif-

fraction problems etc. We introduce a new inner product in the Sobolev Spaces W 1
2 (a, b) and show that

eigenfunctions of our problem form a Riesz basis of this modified space.
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Abstract

In this paper, we have introduced the subclass of univalent functions defined in the open unit disc

and derived some interesting properties like coefficient estimates, distortion theorem, extreme points and

radii of close- to- convexity , starlikness and convexity.
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Fine spectra of upper triangular triple-band matrices over the sequence space `p,

(0 < p <∞)
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Abstract The operator A(r, s, t) on sequence space on `p is defined A(r, s, t)x = (rxk−1 + sxk +

txk+1)∞k=0 where x = (xk) ∈ `p, with (0 < p < 1). The main purpose of this paper is to determine the

fine spectrum with respect to the Goldberg’s classification of the operator A(r, s, t) defined by a triple

sequential band matrix over the sequence space `p. Additionally, we give the approximate point spectrum,

defect spectrum and compression spectrum of the matrix operator A(r, s, t) over the space `p.
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Abstract

In this study, we introduce positive linear positive operators which are combined the Chlodowsky

and Szász type operators and study some approximation properties of these operators in the space of

continuous functions of two variables on a compact set. The rate of convergence of this operators are

obtained by means of the modulus of continuity. And we also obtain weighted approximation properties

for these positive linear operators in a weighted space of functions of two variables and �nd the rate of

the convergence for this operators by using weighted modulus of continuity.
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Abstract

In this paper, Schauder-Tychonoff’s fixed point theorem and the notion of
upper and lower solutions are used to investigate the existence of solutions for
first order impulsive equations.

Keywords:Impulsive equations; upper and lower solutions; fixed point.
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Abstract

In this work, the uniform well possedenes of singular perturbation problems
for parameter dependent parabolic di¤erential-operator equations are obtained.
These problems occur in phytoremediation modelling.
Key Word: Singular perturbation, Initial value problems; Di¤erential-

operator equations; Abstract parabolic equation; Interpolation of Banach spaces;
Semigroups of operators; phytoremidation modelling

AMS: 34G10, 35J25, 35J70
1. Introduction

Remediation techniques have been based on either immobilization, extrac-
tion by physick-chemical methods, landholding, or burial. These method often
have some shortcoming: requiring special equipment, expensive, can remove
biological activity from the soil, and can important a¤ect the soil physical prop-
erties.
The model describing in this projet is developed in three parts. First, the

dynamic portion will be developed using a a reaction-di¤usion systems. Next,
the cost function will involve the dynamic state variables and �nally the de-
sired EPA target will be de�ned as mathematical property. Assume u1 (t; x) ;
u2 (t; x) ; u3 (t; x) are amount of heavy metal in the environment in the roots and
in the shoots at t months on x = (x1; x2; x3) place, respectively. Since the plant
toxicant interaction dynamic occurs during a harvest season, we need to describe
the process one harvest cycle. The initial amount of metal in di¤erent harvest
cycle depends on what is remaining in the soil at the end of the cycle. The
mathematical description of this process can be obtained as the following initial
value problem (IVP) for systems of delay parabolic equation with parameter

s
@ui
@t

+
3X
j=1

bj (s; t)uj (t� �j ; x) = fi (t; x) , 0 < t � T;

ui (t; x) = gi (t; x) ; � �j � t � 0; x 2 [a; b] ; i; j = 1; 2; 3:

1
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Abstract

In the present study, we give the conditions for a curve in the Minkowski space to be a Darboux

helix. We show that � is a Darboux helix if there exists a �xed direction d in R31 such that the function

hW (s); di is constant. We give the relation between slant helice and Darboux helice. As a particular case,

if we take kwk =constant, the curves are constant precession. Some more particular cases of constant

precession curves are studied.
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Abstract

Many applied problems in fluid mechanics and mathematical biology were formulated as the math-

ematical model of partial differential equations. Fluid flow inside capillaries were also considered with

mathematical models [1]-[3]. But it is known that due to the lack of some data and/or coeffi cients, many

real-life problems are modeled as inverse problems [4]-[5]. In this paper, specific modeling of the fluid

flow for an unknown pressure is modeled as a two-phase flow equation. The unknown pressure acting in

the model can be identified by using the overdetermined condition. Difference schemes are constructed

for obtaining approximate solutions of this inverse problem. Stability estimates for the solution of these

difference schemes are established.
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Abstract

In this paper, the Rothe difference scheme and the Adomian Decom-
position method are presented for obtaining the approximate solution of
three dimensional convection-diffusion problem. Stability estimates for
the difference problem is presented.

Keywords: Finite difference method, Adomian Decomposition Method,
Convection-diffusion equation

1 Introduction

In many important applications in engineering such as transport of air and
water pollutants, convection-diffusion problems arises. An example of this kind
of problem is a forced heat transfer. Several numerical methods are proposed
for solving three dimensional convection diffusion problem (see [1]-[11] and the
references therein). In this paper, we focus on the following mixed problem for
the three dimensional convection-diffusion equation

∂u
∂t + b1 (x, y, z) ∂u∂x + b2 (x, y, z) ∂u∂y + b3 (x, y, z) ∂u∂z

−
(
a1

∂2u
∂x2 + a2

∂2u
∂y2 + a3

∂2u
∂z2

)
= f (t, x, y, z) , in Ω× P,

u (x, y, z, t) = 0, on ∂Ω× P ,
u (x, y, z, 0) = g (x, y, z) , in Ω,

(1)

where Ω = (0, 1)×(0, 1)×(0, 1) , P = (0, T ), b1(x, y, z), b2(x, y, z), b3(x, y, z), g (x, y, z)
are suffi ciently smooth functions and a1, a2,a3 are positive constants. Here,
b1 (x, y, z) , b2 (x, y, z), b3 (x, y, z) , a1, a2 and a3 are velocity components of the
fluid in the directions of the axes at the point (x, y, z) at time t.
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Abstract

In today’s competitive markets, optimizing the process of delivering products from suppliers of raw

materials to the customers for the firms formalizes an important problem in the literature. Increasingly

contaminated world and limited sources of energy in recent years are regarded, it is inevitable for the

mathematical models of any supply chain to have an environmentalist perspective. Hence, closed loop

supply chain method has an increasing importance. In this study, a multi-objective linear model is given

for the multi-echelon closed loop supply chain and the solution is obtained by utilizing Zimmermann’s

”min” operator with a fuzzy approach in which the minimum satisfactions of objectives are maximized.

The model is to determine the locations of facilities and distribution quantity on the network regarding

three objective functions, which are; minimizing time and cost, maximizing rating.
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Abstract

Recent times, companies are being forced by hard marketing conditions to make significant and

strategic decisions on their supply chains. In this context, companies are trying to optimize supply

chains towards customer demands and trying to prevent costs that caused by number of inactive facilities.

In this study, by using AHP we make decision about potential establishment of a number of potential

warehouses and distributions centers at regions to be selected from a set of possible candidates with

certain possibilities of customer demands in the supply chain network of a company that is importing

and exporting cleaning materials. The proposed model attempts to simultaneously minimize total cost

and maximizing rating candidate locations using mixed integer linear programming. To obtain solution

fuzzy decision making method is used and numerical example is illustrated.
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 Abstract 

 Modeling voting behavior or determinants of voting in a popular music competition such as 

Queen Elizabeth Piano Contest and Eurovision Song Contest have been growing tremendously after 

2000s. (See [1], [4], [5], [9]). The aim of this study is also to model    
, voting behavior of juries 

and public opinion (via televoting system) of country     in evaluating the singer of country     

(     where   is the total number of participants in the Eurovision Song Contest (ESC). We 

modeled voting behavior taking into consideration the individual characteristic of performer and 

voter, as well as quality of song. Characteristic properties                 of performer   and 

characteristics                 of voter    together affect votes given to a performer, as well as 

exchange of votes between two countries. Voting equation can be improved with these factors as 

below: 

                 

 

   

       

 

   

                                                  

 Where     
      

 are parameters to be estimated. The last two parameters of right-hand 

side of the equation (1) are affinity and objective quality of song. These two parameters together 

indicate some individual characteristics of singer and voter such as gender (male, female and duet), 

the “language” in which song is performed (English, English +national language, French, National 

language), the order of “appearance” in the contest, whether the song is performed “alone” or in a 

“group”, a dummy for “host” country ( if singer represents the host country, the variable takes 1 and 

0 for other), and a dummy variable to capture “cultural block” ties’ effect on voting (Western, 

Scandinavia, Former Yugoslavia, Former Socialist and Independents). Geographic effect 

             and quality of a song are computed as below  

            
 

 
    

 
                                                                    

         
  

 

     
    

     

   

                                                        

 Estimation result of the linear voting equation 4 (including neighborhood and quality 

variable) shows that not only quality of the song is an important part of voting but also affinity 

variables are very crucial determinants of voting equation. Estimation result also indicates that order 

of appearance in the contest, the language of the song and the gender of the performing artist turn 

out to be quite important parameters in explaining voting behavior.  
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We consider nonlinear hyperbolic balance laws posed on a curved spacetime
endowed with a volume form and identify a unique (up to normalization) hy-
perbolic balance law that enjoys the Lorentz invariance property also shared
by the Euler equations of relativistic compressible fluids. The proposed model
can be viewed as a relativistic version of Burgers equation and provides us with
a simplified model on which numerical methods for hyperbolic equations can
be developed and analyzed. This model is also compared with a second model
derived directly from the relativistic Euler equations. We then introduce a finite
volume scheme for the approximation of discontinuous solutions to the Burger-
stype model when the background is chosen to be (a subset of) the Schwarzschild
spacetime. Our scheme is formulated geometrically and is consistent with the
natural divergence form of the balance law and applies to weak solutions con-
taining shock waves. Most importantly, our scheme is well-balanced in the sense
that it preserves static equilibrium solutions. Numerical experiments demon-
strate the convergence of the proposed finite volume scheme and its relevance
for computing late-time asymptotics of (possibly) discontinuous solutions on a
curved background.

This presentation is based on the joint paper [2].
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Abstract

The Newton-Padé approximants are a particular case of the multipoint Padé approximants, corre-

sponding to the situation when the sets of interpolation points are nested.

One may consult papers [1-11] for the theory of those approximations for univariate functions. Re-

cently, the authors [13] found a new form for the Newton-Padé approximations and used it in their

convergence study. In [12] a multivariate generalization of the Newton-Padé approximations was intro-

duced.

The goal of this note is two-fold. Firstly, we will give short extract from our forthcoming paper [13].

Next, we present generalizations of main lemmas for the case of multivariate functions. For the sake of

simplicity we restrict ourselves to the case of two variables because the generalization to more than two

variables is straightforward.
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Abstract. A finite difference method for the approximate solution of the reverse multidimensional parabolic differential 

equation with a multipoint boundary condition and Neumann condition is applied. Stability, almost coercive stability, and 

coercive stability estimates for the solution of the first and second orders of accuracy difference schemes are obtained. The 

theoretical statements are supported by the numerical example. 

    The present paper considers the multipoint nonlocal boundary value problem for then multidimensional parabolic equation 

with Neumann condition 
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Here, ar(x), (x∈Ω), ( )x  (x∈ ), f(t,x) (t∈(0,1),x∈Ω) are given smooth functions and ar(x)≥a>0, Ω=(0,1)×⋯×(0,1) is the 

unit open cube in the n-dimensional Euclidean space with boundary S,  =Ω∪S, and n  is the normal vector to Ω. 

    The first and second order of accuracy in t and the second order of accuracy in space variables for the approximate solution 

of problem (1) are presented. The stability, almost coercive stability, and coercive stability estimates for the solution of these 

difference schemes are obtained. The modified Gauss elimination method for solving these difference schemes in the case of 

one-dimensional parabolic partial differential equations is used. 
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Abstract 

 

In this work we present a study and an evaluation of three models based fusion approach in the 

fuzzy logic context for the segmentation of MR images. The process of fusion consists of three 

parts : (1) information extraction, (2) information combination, and (3) decision step. 

Information provided by T1-weighted,T2-weighted and PD-weighted images is extracted and 

modeled separately in each one using FPCM (Fuzzy Possibilistic C-Means) algorithm, fuzzy 

maps obtained are combined with an operator of fusion which can managing the uncertainty and 

ambiguity in the images and the final segmented image is constructed in decision step. Some 

results are presented and discussed. 
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Abstract

Homotopy Analysis Method (HAM) [1-2] is applied to the problem of the one-dimensional heat equa-

tions with a non-linear heat source subject to the temperature and the heat flux given at a single boundary

to obtain the analytical solutions. Solutions obtained take an important place for one-dimensional heat

flow as applied to a few regular geometries such as slabs, cylinders and spheres. Some of the test problems

are presented to show the efficiency of HAM.
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Abstract

We expose the unique properties of the normal inverse Gaussian distribution (NIG) useful for mod-

eling asset, index and foreign exchange closing prices. We further demonstrate that traditional beliefs

in asset, index, and foreign exchange closing prices not being independently identically distributed ran-

dom variables are fundamentally flawed. Best models are selected using a novel model selection strategy

proposed by Käärik and Umbleja (2011). Our results show that closing prices of Baltika and Ekpress

Grupp (companies trading on Tallinn stock exchange), FTSE100, GSPC and STI (major world indexes),

CHF/JPY, USD/EUR, EUR/GBP, SAR/CHF, QAR/CHF and EGP/CHF (Foreign Exchange rates) can

be modeled by NIG distribution. This means their underlying stochastic properties can fully be captured

by NIG; very useful for predicting price movements, pricing models, underwriting and trading derivatives

etc
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Abstract

In this paper, we consider an inverse problem of �nding unknown source parameterp(t) and u(x; t)

satisfy equation

ut = uxx + p(t)u+ f (t; x) ; 0 6 x 6 1; 0 < t 6 T; (1)

with the initial-boundary conditions

u(x; 0) = '(x); 0 6 x 6 1 (2)

(0; t) = �1(t); 0 < t 6 T (3)

u(1; t) = �2(t); 0 < t 6 T (4)

subject to the overspeci�cation over the spatial domain

u(x�; t) = E(t); 0 < x� 6 1; 0 < t 6 T (5)

where f(x; t); '(x); �1(t); �2(t) and E(t) 6= 0 are known functions, x� is a �xed prescribed interior point in

(0,1). If p (t) is known then direct initial boundary value problem (1)� (4) has a unique smooth solution

u (x; t) [1]: If u represent a temperature distribution, then (1) � (4) can be interpreted as a control

problem with source parameter. Based on the idea of the radial basis functions (RBF) approximation ,

a fast and highly accurate meshless method is developed for solving an inverse problem with a control

parameter [2]. Some numerical examples using the proposed algorithm are presented.
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Abstract The matrix domain XA of an infinite matrix A = (ank)∞n,k=0 of complex numbers in a

subset X of the set ω of all complex sequences is the set of all x = (xk)∞k=0 ∈ ω for which the series

Anx =
∑∞
k=0 ankxk converge for all n and Ax = (Anx)∞n=0 ∈ X. Also, if X and Y are subsets of ω

then (X,Y ) denotes the set of all infinite matrices that map X into Y , that is, A ∈ (X,Y ) if and only

if X ⊂ YA. Let c0 denote the set sequences x ∈ ω that converge to zero, and T = (tnk)∞n,k=0 and

T̃ = (t̃nk)∞k,k=0 be triangles, that is, tnk = t̃nk = 0 for k > n and tnn = t̃nn 6= 0 (n = 0, 1, . . . ). We

characterise the class ((c0)T , (c0)T̃ ). Furthermore we obtain an explicit formula for the Hausdorff measure

of noncompactness of operators LA given by a matrix A ∈ (c0)T , (c0)T̃ ), that is, for which LA(x) = Ax

for all x ∈ (c0)T . From this result, we obtain a characterisation the class of compact operators given by

matrices in ((c0)T , (c0)T̃ ). Finally we give a sufficient condition for an operator given by a matrix to be

a Fredholm operator on (c0)T .
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Abstract

We reduce the spaces ar0, a
r
c , a

r
0(�) and a

r
c(�) and simplify their dual spaces and the characterisations

of matrix transformations on them in [3]. We also obtain an estimate and a formula for the Hausdor¤

measure of noncompactness of some matrix operators on the spaces ar0 and a
r
c , and the corresponding

characterisations of compact matrix operators.
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Abstract

In this work, a connection between extended eigenvalues of direct integral of operators in the direct

integral of Hilbert spaces and their coordinate operators has been investigated.
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Abstract

This work studies a initial-boundary value problem of the weak damped nonlinear higher-order wave

equations. Under suitable conditions on the initial datum, we prove that the solution decays exponentially

and blows up with negative initial energy.
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Abstract

The inequality of Ostrowski gives us an estimate for the deviation of the values of a smooth function

from its mean value. More precisely, if f : [a, b] → R is a differentiable function with bounded derivative,

then ∣∣∣∣∣∣f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(x− a+b
2 )2

(b− a)2

]
(b− a) ∥f ′∥∞ (1)

for every x ∈ [a, b]. Moreover the constant 1/4 is the best possible. Inequality (1) has wide applications

in numerical analysis and in the theory of some special means; estimating error bounds for some special

means, some mid-point, trapezoid and Simpson rules and quadrature rules, etc. Hence inequality (1)

has attracted considerable attention and interest from mathematicans and researchers. Due to this, over

the years, the interested reader is also refered to ([1]-[9]) for integral inequalities in several independent

variables. In addition, the current approach of obtaining the bounds, for a particular quadrature rule,

have depended on the use of peano kernel. The general approach in the past has involved the assumption

of bounded derivatives of degree greater than one.

In this paper, we obtain a new general inequality involving functions of two independent variables by

defining the peano kernel K(x, y; s, t) as the following:

K(x, y; t, s) =



(
t− (a+ λ

b− a

6
)

)(
s−

(
c+ λ

d− c

6

))
for a ≤ t ≤ x, c ≤ s ≤ y,(

t− (a+ λ
b− a

6
)

)(
s−

(
d− λ

d− c

6

))
for a ≤ t ≤ x, y ≤ s ≤ d,(

t− (b− λ
b− a

6
)

)(
s−

(
c+ λ

d− c

6

))
for x ≤ t ≤ b, c ≤ s ≤ y,(

t− (b− λ
b− a

6
)

)(
s−

(
d− λ

d− c

6

))
for x ≤ t ≤ b, y ≤ s ≤ d.

This inequality is a new generalization of the inequalities of Simpson and Ostrowski type obtained by

Zhongxue in [9].
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Abstract 

 

In this work the infinitesimal operators of the regular representations of the group SL(2,R) are 

considered. According to these infinitesimal operators the Casimir operator is expressed. The 

Hamiltonian H is related to Casimir operator C of the group. The energy eigenvalues and the 

corresponding eigenfunctions are given for the solvable potentials 
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Sturm Liouville Problem with Discontinuity Conditions at Several Points
F.H¬ra1 and N. Alt¬n¬̧s¬k2
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Abstract

In this paper we deal with the computation of the eigenvalues of Sturm Liouville problem with

several discontinuity conditions (transmission conditions) inside a �nite interval and parameter dependent

boundary conditons.By using an operator theoretic interpretation we extend some classic results for

regular Sturm Liouville problems.A symmetric linear operator A is de�ned in an appropriate Hilbert

space such that the eigenvalues of such a problem coincide with those of A. Also,we obtained asymptotic

formulaes for the eigenvalues and corresponding eigenfunctions.

Consider the following Sturm Liouville problem with discontinuity conditions at several points inside

a �nite interval,

� (u) := �u00 + q (x)u = �u; x 2 (x0; x1) (1)

B1 (u) := �1u (x0) + �2u
0 (x0) = 0 (2)

B2 (u) := � (�
0
1u (x1)� �02u0 (x1)) + �1u (x1)� �2u0 (x1) = 0 (3)

Tk (u) :=

0@ u (�k + 0)

u0 (�k + 0)

1A�Dk
0@ u (�k � 0)

u0 (�k � 0)

1A = 0; k = 1;m (4)

where x0 = �0 < �1 < ::: < �m < �m+1 = x1; q 2 L2 (x0; x1) ; � is a complex spectral parameter.

We shall assume that �21 + �
2
2 6= 0; �21 + �

2
2 6= 0; � > 0;where � =

8<: 1 , if �
0

1 + �
0

2 = 0

�
0

1�2 � �
0

2�1 , otherwise
and

Dk =

0@ 
1k 
2k


3k 
4k

1A ; 
ik 2 R; i = 1; 4; jDkj > 0 for k = 1;m: Let D0 be the 2� 2 identity matrix.
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Abstract

Three dimensional cellular automata wasn’t much studied by researches. Tsalides et al. characterized

three dimensional cellular automata in [1] and then Hemmingsson investigated quasi periodic behavior

of three dimensional cellular automata in [2]. In this work we study the algebraic behavior of three

dimensional linear cellular automata over Zm. we provide necessary and sufficient conditions for a three

dimensional linear cellular automata over the ring Zm to be reversible or irreversible. As a consequence of

our result we characterize three dimensional linear cellular automata under the null boundary conditions.
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Positivity of Elliptic Difference Operators and its Applications

G.E. Semenova, semgalya@mail.ru

Department of Differential Equations, Institute of Mathematics and Informatics of the North-Eastern
Federal University, Russia

As is well-known that the investigation of well-posedness of various types of parabolic and elliptic
differential and difference equations is based on the positivity of elliptic differential and difference
operators in various Banach spaces and on the structure of the fractional spaces generated by these
positive operators. An excellent survey of works in the theory of fractional spaces generated by positive
multidimensional difference operators in the space and its applications to partial differential equations
was given in [1]-[2]. In a number of works (see, e.g., [3]-[11], and the references therein) difference
schemes were treated as operator equations in a Banach space and the investigation was based on the
positivity property of the operator coeffi cient.
In the present paper, we consider the difference operator

(−1)n∂2nhp +Ah,

where Ah is the self-adjoint positive definite operator in L2h. Applying the method of paper [3] the
positivity of this difference operator in the Holder spaces is established. In applications, the well-
posedness of the Cauchy problem for parabolic differential and difference equations is investigated.
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On (α, β)-derivations in BCI-algebras
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Abstract

The notion of (regular) (α, β)-derivations of a BCI-algebra X is introduced, some

useful examples are discussed, and related properties are investigated. Condition for

a (α, β)-derivation to be regular is provided. The concepts of a d(α,β)-invariant (α, β)-

derivation and α-ideal are introduced, and their relations are discussed. Finally, some

results on regular (α, β)-derivations are obtained.
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1Department of Mathematics, Faculty of Education, Zirve University, Istanbul, Turkey

2Department of Mathematics, Yildiz Technical University, Istanbul, Turkey

Abstract

Cellular automata are simple mathematical representation of complex dynamical systems. Therefore

there are several applications of cellular automata in many areas such as coding, cryptography, VLSI

design etc. [1,2]. In this study, a recurrence relation for computation minimal polynomial of transition

matrix of linear elementary rule 150 with reflective boundary condition [3] was obtained. Then, the

maximum transient and cycle lengths of this rule were calculated by algorithm in [4].
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Abstract

In this paper,we propose a wavelet method to solve the well known Blasius equation. The method

is based on the Haar wavelet operational matrix defined over the interval [0, 1]. In this method,we have

used the coordinate transformation for converting the problem on a fixed computational domain. The

generalized Blasius equation arises in the various boundary layer problems of hydrodynamics and in fluid

mechanics of laminar viscous flows. Comparison is made with existing solutions in literature. Haar

Wavelet Quasilinearization Method is of high accuracy even in the case of a small number of grid points

and without any iteration.
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Abstract

In this study, we give the characterizations of slant helices according to quaternionic frame in 3- and

4-dimensional Euclidean spaces. Furthermore, we obtain some necessary and su¢ cient conditions for a

space curve to be a slant helix according to quaternionic frame.
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Abstract 

In this study, the differential equation characterizations of timelike curves of constant breadth 
are given in Minkowskı 4-space 4E . Furthermore, a criterion for a curve to be the timelike 
curve of constant breadth in 4E  is introduced. As an example, the obtained results are applied 
to the case that the curvatures 1 2 3, ,k k k  and are discussed. 
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   Abstract 
 
   The inverse Laplace transform is of significant importance in mathematical sciences when an 
analytical solution exists in Laplace domain. So, a new solution of the linearized St. Venant 
equations (LSVE) has been obtained for flood routing in open channels. The LSVE has been 
previously used by many researchers [1] and in Laplace domain are in the matrix form 

0





 

B
x

A
t

                                                                                                               (1) 

where   is transfer matrix includes deviations of discharge ),( txq  and depth ),( txy  around the 

reference values ),( 00 YQ . In this new formulation, the Manning formula is linearized as boundary 

condition besides the St. Venant equations to get a Laplace transformable, simplified set of 
equations in Laplace domain as follows 

),(ˆ),(ˆ sLyksLq v                                                                                                                    (2) 

where 
Y

Q
kv 


 . A method for Laplace inversion, which provides a great convergence, very 

accurate response for flood routing problem is used here. As previously this method has been 
used for difuusion waves model [2, 3], the results show the improved De Hoog algorithm [4] 
provide a solution with zero error for discharge, and very small percent of error for depth. 
Applying the well-known Preissmann implicit scheme on the LSVE for equal condition shows 
that the De Hoog algorithm is in complete agreement with the numerical solution of the LSVE.  
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Abstract 
 
 

In this work, A methodology is developed for the analysis of the multibody systems that is 
applied on the vehicle as a case study. The previous study is emphasized on the derivation of the 
multibody dynamics equations of motion for bogie [see 2]. In this work, we have developed a 
guide-way for the analysis of the dynamics behavior of the multibody systems for mainly 
validation, verification of the realistic mathematical model and partly for the design of the 
alternative optimum vehicle parameters . 

 
 

  (1) 

Derivation of the DAEs 

    Lagrange method is used with trajectory coordinate system as seen by equation 1. to derive 
generalized equation of motion for the differential algebraic equations [see 4]. These generalized 
equations programmed in the Matlab’s Symbolic Mathematics Toolbox. The size of the DAE’s 
are 44 for the bogie and about 156 for the whole railway vehicle.  

A methodology is developed for applied mathematics analysis of the multibody systems. 
This methodology can be used to compare with the symbolically derived DAEs of the motions 
with the previous studies for validation or the optimization of the vehicle dynamical parameters 
[see 1 and 3].   Case studies of the railway vehicle multibody mathematical model is tested for 
this methodology with a success. Although the most critical and influential  symbolically varied 
parameter of the velocity is picked for the case study one can pick the rest of the other 
parameters such as mass, inertia or dimensions of the vehicle to design vehicle or mechatronic 
system for purposes such as stability (critical velocity for railway case) and comfort criteria. 

Keywords: Computational differential-algebraic equations (CDAEs), Multibody dynamics 
(MBD), Eigenvalue analysis, Lagrange dynamics, Railway vehicles. 
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Abstract 
 

In this work, the Equations of Motion (EOMs) of the Multibody Dynamics is derived for a 
railway vehicle. The previous work of the authors is related to derive the Multibody Dynamics 
model of the bogie  with 44 DAEs (see [1]). Lagrange dynamics is used as common approach in 
applied mathematics and mechanics for computational differential-algebraic equations (CDAEs). 
Differential equations of motions are formulized as in the generalized symbolic mathematics and 
applied in the Matlab’s MuPad Symbolic Math Toolbox.  

The size of the railway vehicle’s DAEs is about 156. Finally, the results are compared using 
eigenvalues with previous studies in the same area with a success. The symbolic mathematics is 
currently used for derivation of the multibody dynamics EOMs (see [2] and  [4]). Langrange 
dynamics for the trajectory coordinate is applied to derive generalized EOMs for the multibody 
dynamics. Following Equation 1  is one of the generalized equation used to derive the state space 
representation of the EOMs for the railway vehicle (see [3]). 

 
 

  (1) 

 
Keywords: Computational differential-algebraic equations (CDAEs), Multibody dynamics (MBD), 
Eigenvalue analysis, Lagrange dynamics, Railway vehicles. 
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Abstract

In this work, global weak solutions of the multidimensional Boussinesq-type equation with power

type nonlinearity 
 jujp and supercritical initial energy is given by potential well method. Classical

energy methods can not guarantee the global existence for this type of nonlinearity. As is known the

functional de�ned for potential well method includes only the initial displacement, and by use of sign

invariance of this functional one can only prove the global existence for critical and subcritical initial

energy. In the case of supercritical initial energy such a functional fails to prove the global existence. A

new functional is de�ned, which contains not only initial displacement, but also initial velocity.
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Abstract

Extensions of symmetric operators arise in many areas of mathematical physics, like solvable models

of quantum mechanics and quantization problems. Let us consider the scalar fourth order di¤erential

operators generated by di¤erential expression

l (y) = y(4) + q (x) y; 0 � x < +1

where q (x) is a real continuous function in [0;1):

In this paper, a space of boundary value is constructed for scalar fourth order di¤erential operators in

the Lim�3 case. We describe all maximal dissipative, acretive, self adjoint and other extensions in terms

of boundary conditions.
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On the stability of the steady-state solutions of cell equations in a tumor growth model

I. Atac and S. Pamuk

Department of Mathematics, University of Kocaeli, Umuttepe Campus, 41380, Kocaeli - TURKEY

Abstract

In this study, we provide the stability analysis of the steady state solutions of endothelial, pericyte

and macrophage cell equations in a mathematical model in tumor angiogenesis. We do this by studying

phase plane analysis of the system of ordinary differential equations obtained from the cell equations. We

also discuss the biological importance of the analysis in tumor angiogenesis.

Keywords: Angiogenesis, Phase plane analysis, Tumor cells
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Abstract 

 

In the petroleum production, when an oil well is drilled, rock cuttings are transported up to 

the surface. As current mathematical models of the flow and transport neglect the effect of 

drillstring rotation, it is necessary to have a model that includes rotation effects. Predicting 

effective cuttings transport mechanism requires all of the parameters to be considered 

simultaneously. To beter understand the cuttings transport mechanism, a mechanistic model is 

used for cuttings in Couette and Poiseuille flow, as well as the helical flow being the 

superposition of Couette and Poiseuille flows. 

In this paper, we present the approximate solution of cuttings transport model(Couette 

Flow Model) being only direction of rotation by combining Modified Differential Transform 

Method and Adomian Decompositon.  

Couette flow velocity profile will be used in  
   

   
 

  

  
           model equation 

instead of     , where      is fluid velocity at  location,    is dynamic viscosity,    is particle 

size and          (Kurzweg, 1995). Nondimensional parameters are                

and                  . 
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Abstract.
Partial differential equations with singular (point) source terms arise in many different scientific and engineering applica-

tions. Singular means that within the spatial domain the source is defined by a Dirac delta function. Our interest is this type
of problems is motivated by mathematical modelling of forecasting and development of new gas reservoirs [1, 2, 3, 4].

Solutions of the problems having singular source terms generally have lack of smoothness, which is an obstacle for standard
numerical methods. Therefore, solving these type of problems numerically requires a great deal of attention [5, 6, 7].

In this paper we discuss the numerical solution of initial-boundary value problem with singular source terms















ut = D uxx +k1δ (x−a1)+k2δ (x−a2), 0 < x < 1, t > 0, 0 < a1 < a2 < 1,

u(t,0) = uL, u(t,1) = uR, t ≥ 0,

u(0,x) = ϕ(x), 0≤ x ≤ 1,

(1)

whereδ (x) is a Dirac delta function. We follow the standard finite volume approach based on the integral form of (1). We
consider this approach more natural than the finite difference one directly based on the differential form, since for the integral
form the treatment of the Dirac delta function expression is mathematically clear. For ease of presentation, we assume that
there are only two source terms. The presented material is extendable to the case with more than two source terms. Finally,
this study can be readily extended to the case with time-dependent source terms.

Keywords: Diffusion Equation; Singular Source Terms; Finite Volume Method
PACS: 02.30.Jr, 02.60.Cb, 02.60.Lj, 87.10.Ed
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Abstract

The investigation of regular boundary value problems for which the eigenvalue parameter appears

in both the ordinary differential equation and the boundary conditions originates from the Birkhoff’s

work [3]. In recent years, more and more researchers are interested in the discontinuous Sturm-Liouville

problems. Various physics applications of this kind of problems are found in many literatures (see [1],

[2], [6]). The purpose of this paper is to study a Sturm-Liouville problem with discontinuities in the case

when an eigenparameter appears not only in the differential equation but also in the boundary conditions.

Morever, the ”differential equation” contained also an abstract linear operator (unbounded in general)

in the Hilbert space L2(−1, 0)⊕ L2(0, 1). We apply a different approach for investigation some spectral

properties of this problem.
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Abstract

Expanding method of (G′/G) can be implemented to find survey solutions of travelling wave of

some nonlinear partial differential equations. The answers depend on hyperbolic functions, trigonometric

functions and rational functions (see [1]).

This method, converts nonlinear partial differential equations into a plane differential equation. It is

possible to use this method to solve integrable equations and non-integrable equations. In this paper, by

describing the method we analysis the application of it to solve mkdv equation (see [2-3]).

Phenomenon in physics and other fields are often described by nonlinear partial differential equations.

During 40 years ago, finding survey solutions of nonlinear partial differential equations by implementing

different methods have been the target of many researchers and the powerful methods of inverse diffusion

method, homogeneous equilibrium,.expanding method of (G′/G) are proposed that are based on assump-

tions that the solutions of travelling wave of nonlinear partial differential equations can be expressed

in (G′/G) by polynomial and G = G(ξ)is correct in second order linear ordinary differential equations

(LODE). The degree of polynomial can be obtained by balance between the highest-order derivative of

the dependent variable in linear part of the differential equation with highest-order of dependent variable

in nonlinear part that is appeared in ODE.

Definitions and Basic preliminaries:

1.Balance number

balance number ofm can be obtained by balance between the highest-order derivative of the dependent

variable in linear part of the differential equation with highest-order of dependent variable in nonlinear

part that is appeared in ODE.

2.Explaining of (G′/G) Expanding Method

We consider nonlinear differential with independent variable of x and t

P (u, ut, ux, utt, uxt, uxx, ...) = 0 (1)

Which u = u(x, t) is an unknown function, P is a polynomial in u = u(x, t) and has been its various

partial derivative that include higher order derivative and nonlinear parts.

3.Solving mkdv Method by (G′/G) Expanding Method

In this section, we consider mkdv as the following

ut − u2ux + δuxxx = 0 δ > 0 (2)

We intend to find the solution of above traveling wave equation

u(x, t) = u(ξ) ξ = x− vt (3)

Page 81



The speed of V will be determined later.

In this paper, (G′/G) Expanding Method proposed by Wang, is used to solve mkdv method. It

is clear that solving nonlinear partial differential equations needs suitable change of variable and after

solving this kind of equation, we reach a solution. As we observed, by using (G′/G) Expanding Method,

it is possible to solve these equations and have more solutions without considering specific change of

variables. This method has various applications; as it is a direct and survey method to find travelling

wave solutions of nonlinear partial differential equations and the outcome results can affect the future

researches significantly.
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Abstract

In this study we give a weighted Bernstein inequality for trigonometric polynomials on a part of the

period.
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Abstract

To solve the mixed problem for a partial differential equation with involution and a symmetric potential

there was found an explicit analytical representation by the Fourier method. The problem was considered

under general boundary conditions with constant coeffi cients by a space variable. At the same we used

the methods for avoiding the termwise differentiation of a functional series and applying the minimal

conditions on initial data of the problem.
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Abstract

In this paper, we investigate suborbital graphs for the action of the normalizer of Γ0 (N) in PSL(2,R),

where N will be of the form 28p2 , p> 3 and p is a prime. In addition we give the conditions to be a

forest for normalizer in the suborbital graph F
(
∞, u

28p2

)
.
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Abstract

Reed-Solomon codes are very convenient for burst error correcting codes, but as the number of errors

increase, the circuit structure for Reed-Solomon codes become very complex. The modular and regular

structure of cellular automata can be constructed with VLSI economically. Therefore, in recent years,

cellular automata have became an important tool for error correcting codes. For the first time cellular

automata based byte error correcting codes analogous to extended Reed-Solomon codes over binary fields

was studied by Chowdhury et al. in [1] and Bhaumik et al. improved that coding-decoding scheme in

[2]. In this study cellular automata based double-byte error correcting codes are generalized from binary

fields to primitive finite fields Zp.
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Abstract

Let D be set of dual numbers. In this work we study the first fundamental theorem for special dual

orthogonal transformations group SO(n,D) in case of n = 2 . Then our getting results compared the

special orthogonal transformations group SO(4, R) in R4 because D2 is isomorph to R4 So we showed

that the minimal conditions of the dual vectors are more less than minimal conditions of real vectors.
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Abstract

A continued fraction is an expression of the form

a0 +K∞
k=1

[
bk
ak

]
= a0 +

b1

a1 +
b2

a2+
b3

a3+···

,

where a0, a1, a2, . . . and b1, b2, b3, . . . are two sequences of real or complex numbers. It is remarkable that

rational and irrational numbers can be clearly distinguished by continued fractions. In the 19th century,

theory of continued fractions was one of the most popular areas of investigation in mathematics. The

great mathematicians such as Karl Jacobi, Oscar Perron, Charles Hermit, Karl Friderich Gauss, Augustin

Cauchy, Thomas Stieltjes etc. have contributed to the theory [1].

We study the continued fraction f(t) = K∞
k=1

[
k+t
k

]
, which depends on the parameter −1 < t < ∞.

This continued fraction was studied by Euler. Using the Euler’s differential method, which was not used

by mathematicians for a long time, we derive a new formula

f(t) =

∫ 1

0
(1− x)p−t dp

dxp (x
t+1ex) dx∫ 1

0
(1− x)p−t dp

dxp (xtex) dx
, p− 1 < t ≤ p+ 1,

where p = 0, 1, 2, . . . . For the integer values t = p = 1, 2, . . . ,

f(p) = (p+ 1)

∑p−1
k=0

ap,k

p−k+1∑p−1
k=0 ap,k

,

where

ap,k =

 p

k

 · 1

(p− k − 1)!
.

Previously, it was proved by Euler that f(0) = (e− 1)−1. Using numerical methods it is found that the

function σ(t) =
√
t− f(t) is slowly increasing and limt→∞ σ(t) = 0.25.
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Abstract 

 

In this paper, we investigate some new sequence spaces which naturally emerge from the 

concepts of almost convergence and generalized weighted mean. The object of this paper is to 

introduce to the new sequence spaces obtained as the matrix domain of generalized weighted 

mean in the spaces of almost null and almost convergent sequences. Furthermore, the beta and 

gamma dual spaces of the new spaces are determined and some classes of matrix transformations 

are characterized. 
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Abstract

There are two kinds of transactions in the crude oil markets; one is based on immediate delivery while

the other one on future delivery. The spot market is dependent on the first kind of transactions and the

future market is associated to the second one. Market condition ( e.g. market risk, irrational trading,

etc. ) along with other factors ( e.g. credit risk, insurance risk, seasonal factors and etc. ) is often the

main cause of uncertainty in the crude oil markets. Therefore, the future markets ( leading markets ) are

built up to provide a cover structure for these uncertainties. Also crude oil future contracts, determine

definitive prices in future deadlines to buy or sell according to specific criteria of delivery and payment.

On the other hand, future prices reflects the markets expectations about future conditions. Consequently,

large differences between futures and spot prices is often used to describe the overall market conditions.

Wavelets are used as a legitimate alternative alternative for irregular situations such as data or signals

with scaled features, or containing discontinuities and sharp edges and so on (see [1-2]).

In this study, we are going to use the wavelets as a suitable tool to investigate its performance in the

crude oil futures markets (see [3]). We intend to provide forecasts over different forecasting horizons by

introducing a prediction procedure and predicting future prices based on the wavelets by utilizing a series

of data from the crude oil market and at last putting the results in comparison with the crude oil future

markets data. Definitions and Basic preliminaries

1.Multi-scale analysis

multi-scale analysis with a sequence of involute sub-space Vj of functional space of procedure V with

null common point and at dense in L2(R) . This analysis is a discretion at different levels of scalability,

which requires two-scale relationship such as f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj−1 (see [4-5]).

2.discrete wavelet transform(DWT)

discrete wavelet transformation enables us to discrete a time based sequence to subsequences with

different scales in order to extract important hidden information and unstable features (see [4-5]).

We present a procedure to predict crude oil prices for time series of 1, 2, 3 and 4 month and then

compare the predicted values with actual expected prices of future market in mentioned time series and

as for 1 month time series the result are shown in below figure:
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Forecast results in contrast with observed values

Forecasting horizon Wavelet-based forecast Futures

1 month ahead 0.992 0.952

2 months ahead 0.998 0.903

3 months ahead 0.995 0.841

4 months ahead 0.998 0.772

And as you can see in below figure, wavelet based prediction procedure is more efficient for sample with

a value bigger than 100 .

Applicable procedure will be created by some main key properties of wavelets and is established based

on discrete wavelet transformation (DWT) on Average monthly time series of crude oil. Wavelet based

prediction procedure which is used in this study, can be applied to examination of the dynamic properties

of various financial and economical phenomenon, like economic time series. also predicted crude oil prices

based on wavelets can be used to determine oil prices in future contracts.
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Abstract 
In this paper, fractional variational iteration method (FVIM) is implemented to give an approximate 

analytical solution of a time-fractional Navier–Stokes Equation. Fractional derivatives are described in 

the Riemann-Liouville derivative. A new application of fractional variational iteration method (FVIM) 

was extended to derive analytical solutions in the form of a series for these equations. By using an 

initial value, the explicit solution of the equation has been presented in the closed form and then its 

numerical solution has been showed graphically.The behavior of the solutions and the effects of 

different values of fractional order   are indicated graphically. The results obtained by the FVIM 

reveal that the method is performs extremely well in terms of efficiency and simplicity method for 

nonlinear differential equations with modified Riemann-Liouville derivative. 

 

Keywords: Fractional variational iteration method, A time-fractional Navier–Stokes 

Equation, Riemann-Liouville derivative, Fractional calculus 
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Abstract 

 
In this paper we applied modified simple equation method (MSEM) for solving  some 

nonlinear evolution equations  which are very important in applied sciences.  
We consider a nonlinear evolution equation: 
 
( ), , , ,... 0    t x xxF u u u u =                                                                                                                      (1) 

where F is a polynomial in u and its partial derivatives.  

Step 1. Using the wave transformation 

( ) ,  u u x tξ ξ= = −                              (2) 

From (1) and (2) we have the following ODE: 

( )' '' ''', , , ,... 0P u u u u =
                                                                                                       

(3) 

where P is a polynomial in u  and its total derivatives and ' d

dξ
= . 

Step 2. We suppose that Eq. (3) has the formal solution: 

( ) ( )
( )0

k
N

k
k

u A
ψ ξ

ξ
ψ ξ=

⎛ ⎞′
= ⎜ ⎟⎜ ⎟

⎝
∑

⎠                                                                                                    
(4) 

where  are arbitrary constants to be determined such that kA 0NA ≠  while ( )ψ ξ  is an unknown 

function to be determined later. 

Step 3.  We determine the positive integer  in (4) by balancing the highest order derivatives 
and the nonlinear terms in Eq. (3). 

N

Step 4. We substitute (4) into (3), we calculate all the necessary derivatives  and then we 

account the function 

, ,..u u′ ′′ .

( )ψ ξ . As a result of this substitution, we get a polynomial of  ( )
( )

ψ ξ
ψ ξ
′

and 

its derivatives. In this polynomial, we equate with zero all the coefficients of it. This operation 
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yields a system of equations which can be solved to find  and kA ( )ψ ξ . Consequently, we can 
get the exact solution of Eq. (1). 
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Abstract

This paper firstly revisits the cross efficiency evaluation method which is an exten-
sion tool of data (envelopment analysis. In this paper, we consider the DMUs as the
players (institutions) in a cooperative game, where the characteristic function values
of institutions are defined to compute the Shapley value of each DMU (institution),
and the common weights associate with the imputation of the Shapley values are used
to determine the ultimate cross efficiency scores for institution of Stock Exchange of
Tehran. This paper introduces the models for computing benefit for each institution.
Using shapely value we obtain the effect of each institution, and through determin-
ing common weight for each company we find out the ultimate weight which shows
how much the existence or not existence of that institution affects the interesting
competence.

Keywords: Data Envelopment Analysis (DEA), Cross efficiency, Cooperative game, Shapley

value, Common weights, stock exchange.
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Abstract 

 

Nonlinear partial differential equations have important applications in physics, engineering and 

applied mathematics. Mathematical modelling of physics and engineering problems usually 

results in nonlinear partial differential equations. To find the travelling wave solutions of 

nonlinear evolution equations several methods [1-6] have been proposed. This study presents an 

application of the trial equation method for nonlinear partial differential equations. The trial 

equation method is used to obtain exact travelling wave solutions of some nonlinear evolution 

equations arising in mathematical physics. 
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Abstract

In this work, the paranormality properties of some class direct sum of differential operators for first

order in the Hilbert space of vector-functions in the finite interval are investigated. Finally, a spectrum

of these operators is researched.
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Abstract

Much recent attention has been given to dynamic equations on time scales, or measure chains, and

we refer the reader to the landmark paper of S. Hilger [1] for a comprehensive treatment of the subject.

A book on the subject of time scales by Bohner and Peterson [2] also summarizes and organizes much of

the time scale calculus.

In this paper we shall study the oscillations of the following nonlinear second-order dynamic equations

with damping

(r(t)Ψ(x∆(t))∆ + p(t)Ψ(x∆(t)) + q(t)f(xσ(t)) = 0, t ∈ T, (1)

where Ψ(t), f(t), p(t), q(t) and r(t) are rd-continuous functions. By using a generalized Riccati transfor-

mation and integral averaging technique, we establish some new sufficient conditions which ensure that

every solution of this equation oscillates. Throughout this paper, we will assume the following hypotheses:

(H1) p(t), q(t) ∈ Crd(R,R+),

(H2) Ψ : T→ R is such that Ψ2(u) ≤ κuΨ(u) for κ > 0, u 6= 0,

(H3) f : R→ R is such that f(u)
u ≥ λ > 0, and uf(u) > 0, u 6= 0,

(H4) r(t) ∈ C1
rd([t0,∞),R+),

∫∞
t0

( 1
r(t)e−p(t)

r(t)

(t, t0))∆t =∞.
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Abstract 

 

The main purpose of this paper is to determine the fine spectrum with respect to the Goldberg's 

classification of the operator $\Lambda$ defined by a lambda matrix over the sequence spaces 

$c_{0}$ and $c$.  As a new development, we give the approximate point spectrum, defect 

spectrum and compression spectrum of the matrix operator $\Lambda$ on the sequence spaces 

$c_{0}$ and $c$. 
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On Hadamard Type Integral Inequalities For Nonconvex Functions
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Abstract

Convexity plays a central and fundamental role in mathematical �nance, economics, engineering,

management sciences and optimizastion theory. In recent years, several extensions and generalizations

have been considered for classical convexity. A signi�cant generalization of convex functions is that of

'-convex functions introduced by Noor in [3]. In [3] and [6], the authors have studied the basic properties

of the '-convex functions. It is well-know that the '-convex functions and '-sets may not be convex

functions and convex sets. This class of nonconvex functions include the classical convex functions and

its various classes as special cases. For some recent results related to this nonconvex functions, see the

papers [3]-[6]. In this article, using functions whose derivatives absolute values are '-convex and quasi-'-

convex, we obtained new inequalities releted to the right and left side of Hermite-Hadamard inequality.

In particular if ' = 0 is taken as, our results obtained reduce to the Hermite-Hadamard type inequality

for classical convex functions.
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A geometrical approach of an optimal control problem governed by EDO 

NEDJOUA DRIAI 
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Abstract: 

 

      The theory of optimal control is a very important branch of optimization, the resolution of the 

problems controls optimal asks for the intervention of several mathematical tools, in particular the 

partial derivative equations. In this work one gives a geometrical approach of a problem of optimal 

control, it where one calls on the basic notions of the calculation of the variations such as the equation 

of Euler-Lagrange which is a requirement of optimality, the principle of maximum of Pontriagaine 

(PMP), which gives an analytical aspect to the problem controls optimal and makes it possible to study 

unquestionable property of the functions which defines the criterion to be minimized, the regularity of 

the solutions (minimum or maximum). An other very important aspect is well geometrical aspect which 

is used to find the geodetic ones, their natures, their numbers which requires a geometrical luggage 

such as the fields, of vector, the vector spaces, the curve acceptable… Then can about it defines a 

problem controls optimal controlled by EDO geometrically by giving some conditions. 
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Abstract

In this work, we consider a purely spatial higher order bad Boussinesq-type equation. We obtain the

existence and uniqueness of the local solutions. The local existence of the solution is given by aid of

contraction mapping principle.
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Abstract 

A perturbation algorithm using a new transformation is introduced for boundary-value problem with small 

parameter multiplying the derivative terms.  To account for the linear and the nonlinear dependence of the 

function, we exhibit the function f for the system. We introduce the transformation   xxfTe );,(   , where f   

depends on ,x and .  Results of   Multiple Scales method, method of matched asymptotic expansions and our 

method are contrasted.   

 

We consider the following boundary-value problem 
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Where  is a small dimesionless positive number. It is assumed that the equation and boundary conditions have 

been made dimensionless.  

 
In Direct Perturbation Method, secular terms appear of higher orders of the expansion invalidating the solution. 

In order the avoid this problem a new transformation has been proposed in our study. 

 

The new transformation is defined as, 

 

                                                                     xxfTe );,(                                                                     (2) 

 

 Using the chain rule, we transform the derivate accordingly 
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So, we have obtained a more effective parameter expression eT   without losing the original parameter 

,x and . Thus, speeding up and slowing down control of the time parameter will be available as in Method of 

Multiple Scales. 

 

In Equation (3) first order derivatives according to new variable eT  appear in the second order derivative 

expressions according to original time variable x. So, we are able to have information about parameters of 

nonlinear differential equation and to interpret the results. 
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By this new transformation we have the advantages of both method of  matched asymptotic expansions  and 

Method of Multi Scales [1-6]. 

 

Using perturbation algorithm with new transformation, a more effective time expression without losing the 

original time parameter t have been obtained.  Information about parameters of nonlinear differential equation 

and interpretation of the results has been achieved. Applying  this transformation on boundary value problem  

the  results obtained  are compared with the results of the studies conducted to time. 
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Abstract  

A  perturbation algorithm using any time transformation is introduced. To account for the nonlinear 

dependence of the function, we exhibit the function f of the system in the differential equation. To 

this end, we introduce the transformation   ttwfTe ),(  , where f is a function that depends on t or w. 

The problems are solved with new time transformation: Linear damped vibration equation, classical 

Duffing equation and damped cubic nonlinear equation.  Results of Multiple Scales, Lindstedt 

Poincare method, new method and numerical solutions are contrasted [1-6].   

Solution of Differential equations by perturbation technique using any time transformation. In Direct 

Perturbation Method, mostly secular terms appear of higher orders of the expansion invalidating the 

solution. In order the avoid this problem a new time transformation has been proposed in our study. 

   

The new time transformation is defined as, 

 

                                                  ttwfTe ),(                                                    (1) 

   

 Using the chain rule, we transform the derivate accordingly 
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So we have obtained a more effective time expression eT   without losing the original time parameter 

t using the function f. Thus, speeding up and slowing down control of the time parameter will be 

available as in Method of Multiple Scales. 
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In Equation (2) first order time-derivatives according to new time variable eT  appear in second order 

time derivative expressions according to original time variable.  So, we are able to have information 

about some parameters of nonlinear differential equation, and to interpret the results. 

 

By this new time transformation we have the advantages of both Lindstedtpoincare method and 

Method Multi Scales . 

 

Using a new perturbation algorithm with new time transformation, we showed that, first we have 

obtained a more effective time expression  without losing the original time parameter t using the 

function f. We are able to have information about some parameters of nonlinear differential equation, 

and to interpret the results. When we apply this transformation on the known Duffing equation with 

the results of the studies conducted to date have compared the results obtained. 

 

We found in this new time with the transformation of the solutions are compared with approximate 

solutions do not differ in Results of Multiple Scales, Lindstedt Poincare method and we found that 

the approximate solutions. 
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Abstract

In this paper we study the order of convergence of a generalization of positive operators by means

of the functions from Lipschitz class. We use the test functions
�

x
1+x

��
for � = 0; 1; 2; a Korovkin type

theorem given by [1]. Furthermore we estimate the rate of convergence of these operators.Some �gures

correspond to obtaining results are given. Finally, the algorithm used in the program has been added.
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Abstract 

 

In this study, a renewal-reward process with a discrete interference of chance  X(t)  is 

investigated. We assume that 
t 0(X (t)) 

 is a renewal-reward process with a gamma distributed 

interference of chance with parameters ( , )  . Under the assumption that the process is ergodic, 

the paper provides the three-term asymptotic expansions for the moments nEX
, n , as λ 0 . 

References 

 

[1] Aliyev R.T., Khaniyev T.A.,
 
Okur Bekar N., Weak convergence theorem for the ergodic 

distribution of the renewal- reward    process with a gamma distributed interference of chance. 

Theory of Stochastic Processes, 15 (31) 2, 42-53, 2009. 

[2] Csenki A., Asymptotic for renewal-reward processes with retrospective reward structure, 

Operation Research and Letters, 26, 201-209, 2000. 

[3] Feller W., An Introduction to Probability Theory and Its Applications II,  J. Wiley, New 

York, 1971. 

[4] Gihman I.I., Skorohod A.V., Theory of Stochastic Processes II, Springer, Berlin, 1975. 

[5] Ross S.M., Stochastic Processes, 2nd Ed. New York: John Wiley & Sons, 1996. 

 

Page 110



Blow up of a solution for a system of nonlinear higher-order wave equations with strong

damping

N. Polat and E. Pi̧skin

Department of Mathematics, Dicle University, Diyarbakir, Turkey

Abstract

This work studies a initial-boundary value problem of the strong damped nonlinear higher-order wave

equations. Under suitable conditions on the initial datum, we prove that the blow up of the solution.
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conditions to an integral equation
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Abstract

In this paper the problem on the eigenvalues of the Cauchy-Riemann operator with homogeneous

boundary conditions is reduced to an integral equation In the functional space C(|z| ≤ 1) we consider

the operators generated by differential operation of the Cauchy-Riemann

Kω (z) =
∂ω (z)

∂z
,

where z = x+ iy, z = x− iy, ∂∂z =
1
2

(
∂
∂x + i

∂
∂y

)
on the set

D (K) ⊂
{
ω (z) ∈ C(|z| ≤ 1), ∂ω (z)

∂z
∈ C(|z| ≤ 1)

}
.
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Abstract

In present paper, solutions of some elementary geometric inequalities are obtained. Firstly, we get a

more useful inequality by specifying the largest lower and smallest upper bounds, to be able to end the

inaccuracy of the following inequality. Let a, b, c are lengths of sides of a triangle, and if distances of a

taking point in the inner region of a triangle to the vertices are x, y, z, then following inequality satis�es

1

2
(a+ b+ c)< x + y + z < a + b + c:

Nevertheless it is true and useful, but it has not accurate boundaries. Because neither 1
2 (a+ b+ c)

is the largest lower bound, nor a+ b+ c is the smallest upper bound of this sum. But in university

preparation course books and textbooks, which describe this inequality, they resolved by accepted these

greatest lower bound and least upper bound, so that incorrect results were obtained. In this work, we

solved this inequality with more useful bounds. Namely,

1. If distances of a taking point in the inner region of a triangle to the vertices are x, y, z which have

lengths of sides a, b, c, and the area A, and also measures of all internal angles are smaller than

120 degrees, then following inequality satis�esr
1

2

�
a2 + b2 + c2 + 4

p
3A
�
� x+ y + z < max fa+ b; a+ c; b+ cg :

2. If distances of a taking point in the inner region of a triangle to the vertices are x, y, z which have

lengths of sides a, b, c, and the area A, and one of the measure of internal angle is greater than or

equal to 120 degrees, then following inequality satis�es

min fa+ b; a+ c; b+ cg < x+ y + z < max fa+ b; a+ c; b+ cg :

We have stated and proved some theorems and lemmas that have done before (see in [1-5]). One of

the our theorems is famous one, namely the Toricelli-Fermat point that was solved in many ways.

In [6] and [7], we observed that Mustafa Ya¼gc¬have studied such as this work nicely. But, our proofs are

completely di¤erent and some parts are more simple and clearer. In [7], he gave a problem. He claimed

the problem he has given can not be solved using only geometry, but calculus is also used to solve the

problem. We decided to prove this problem given in [7]. After showing the existence and uniqueness of

the triangle 4XYZ de�ned in the problem, we tried to solve the problem by using only geometrical way

and we succeeded. The most interesting part of our article is second part, proving this following problem

given below:

Problem. For a given point P, on changing plane of the X, Y and Z let be jPXj = a; jPY j = b; and

jPZj = c: Then the circumference of the triangle 4XYZ has the largest value, when P is at the inner

center of the triangle. Secondly, what can be the minimum value of the sum of a, b and c?
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Abstract

Nowadays, puzzles are used commonly as a fountain head of our monotonous lives or to spend free

time. Crossmatching puzzle (CMP) is quite similar to the crossword puzzle (CWP). There are detection

key table and control key table in crossmatching puzzles instead of questions in crosswrod puzzle which

are written from left to right and from top to bottom. Letters in each row of the main solution table

are arranged in an order in detection key table. In the same way, letters in the main solution table are

arranged in order column by column are put in the control key table. Therefore, the main table is tried

to solve with crossing of the letters in the detection key table and control key table.

For solution of cross-matching puzzle can be used depth search algorithm. However, in spite of depth

search algorithm gives the exact result, size of puzzle as augments computing time of solution increases

exponentially and it makes the solution of puzzle impossible. In this case, stochastic search is better to

use instead of deterministic search algorithm.

In this study, improved genetic algorithm as multi-layer is used as stochastic search method [2]. In

this algorithm, each letters represent a gene and each rows represent a chromosome. An individual is

generated by chromosomes as number of rows come together. Fitting function of created individual is

determined according to fitness of control key table.

Keywords: Crossmatching Puzzle, Multi-Layer Genetic Algorithm
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Abstract

Random number generation, especially with the development of computer technology has an impor-

tant place in the world of it.Uniform distribution random number generation can be done in almost all

programming languages. Also in other distributions number generation can be produced with the help

of the generated number from uniform distribution [1]. Games, education and simulation such as appli-

cations programs which frequently used random number generation, is produced in the form of discrete

data. Sometimes random numbers generation produced with the same values observe consecutive. In

most applications (such as education) to purify this effect we can reused the resulting number again. But

it reduces the amount of numbers, the random number will be in facilitates prediction.

Indeed, as it reduced the probability of the taken number at the same time for making the prediction

of the next number difficult,variable produced random numbers with their probability [2].

The frequency of region of each generated random number (fi) are stored in an increase. The next

random number which be generated,if it selected in each region,that number is considered to be the

number. In this method,because of the equal intervals of the numbers they have equal probability.The

aim here is to reduce the probability of selecting the same number. In this case,the interval between the

numbers must be narrowed. The process of increasing of the propbability of narrowering the interval

transferred to other numbers. In this case, interval’s limits will be changed.

In statistical simulations,deviations from randomness is be reduced by taking too much random num-

bers. In this work, reduction of the amount of deviation,a set of data as a result of simulation provides

an approach theoretical curve more rapidly. Thus simulation results can be reached with less data. This

provides a reduction of the computing time.
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Abstract

In image processing and pattern recognition, it is an important concept defining two-dimensional

objects in the image [1]. Firstly, the dominant points of the edges of the object (corner points) are

determined while objects are defined. Objects with the help of the dominant points compared to a

polygon, then the number of edges or vertices are determined. The purpose of the dominant point, the

desired object is to represent, using fewer points. Thus, in practice, it is realized large memory, and

trading volume. The problem is how to select these points. According to number of dominant point of

any object, all combinations of boundary pixels is tested. Thus the exact solution is used in polygonal

approach that gives the least error. If the object is small, and the required number of points is less,

the exact solution will give the best results. However, if the required number of combinations is more,

deterministic solution is impossible. Therefore, for solving the problem it is needed a stochastic search

algorithm are needed. In this case, artificial bee colony (ABC) algorithm selected. ABC algorithm

has been developed by modeling the bees look for food in bulk [2]. In this study, the advantages and

shortcomings of the ABC method were examined by comparing ABC method with Genetic algorithm

method

Keywords: Dominant Point, Digital Curve, Polygonal Approximation, Artificial Bee Colony Algo-
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Abstract

Random numbers generation in polygonal area is used in many applications area simulation. These

application areas can be distribution of living life in a pond, level of pollution in a city, density of tree

species in a forest, traffic flow in a region, density of flight in air space, diversity of wildlife in a region,

crime rate in a city etc. [1].

Traditionally, acceptance-rejection method is used that in a polygonal area which it has known prob-

ability density function (f(x,y)) to generate random numbers [2]. For this, at first rectangular area

boundaries which are surrounding polygon is found. By the help of these boundaries X and Y random

values are created which they selected from uniform distribution. If created point is out of polygonal

area, point is rejected. If selected point within polygonal area for adapting selected point to probabil-

ity density function, a random value which is between zero and highest probability density value within

polygonal area selected from uniform distribution (z direction). If this value is bigger than value of f(X,Y)

is rejected, if not it is accepted. Thus, a random point is selected in polygonal area. This procedure can

be repeated any numbers of random numbers are generated. Used method not only generate unnecessary

random number but also it causes increased computational time for investigating whether the point in

polygonal area.

The basis of proposed method is based on that calculated by dividing triangle pieces of the all area with

corner points of polygonal area by combining together. By selecting a certain random point in polygonal

area, triangulation size can be reduced and calculation sensitization can be increased. A plane which is

in the probability density function value of corner points of each triangle, regarded as probability density

function of the triangle. Under the probability density functions that they have all triangles volume

be equal 1 is agreed as the probability basic axiom. Hence volume of triangular prism of each triangle

formed is gave probability that the selection of the triangle. The probability density function defines in

a unit triangle which is subtending the probability density function for each triangle. A random number

generated within this defined triangle is moved by the principle of affine invariance into selected triangle

area. In this manner any number of random numbers can be generated.

The method proposed in this study not only prevents unnecessary random number generation but also

reduces computation time indeed. Specially, when want to generate a large number of random numbers

it can be used as an effective method.
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Abstract

Sometimes distance, necessary to take wide- angle photography , may not be available. In this case,

the need may occur combining in accordance photographs taken piece by piece. Nowadays, a lot of

camera manufacturer tried to solve the problem by using wide-angle lens (fish eye) [1-2]. But in order

to change perspective it is almost impossible to get a good image. On the other hand, on the basis of

images taken by a number of different angle (especially video images) may be required to obtain a wide-

angle image. In this case, in accordance with a multi-image combined panoramic images are obtained.

However, adaptation research for the realization of suitable attachment can take a very long time.

In this study, for solving the problem, artificial bee colony algorithm [3] is changed based on adopted

multi-object search. According to this method, the right side of each image is determined as the food

region and the left side represents a bee hive. The bees in each hive move to food regions of other images,

divided into groups that have equal number of bees. Each bee has its own search on food regions. After

one of the bees which from the first hive reached the highest value of the objective function, tries to pull

the other bees from other regions. As a result of a particular iteration bees of every hive are kept together

in a certain region. Thus, it can be determined that which image is positioned in which order and which

location.
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Abstract

In this study we have created Hilbert Space of The Sturm-Liouville Boundary Value

Problem in [0, π] interval, with boundary conditions which has λ complex eigenparameter.

We have shown symmetric of appropriate operator to the problem. We have obtained

asymptotic of solution functions and asymtotic of wronskian of the solution functions by

using them. Moreover, we have examined Green function and asymtotic expansion of

eigenvalues.
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Abstract 

In this paper, it was aimed to develop a system that works in real time for to obtain palmprint pose 

(point of view) of a fully opened hand towards the camera. This system will be both a platform independent 

model (non-touchable) and arising from the hand movement rotations, translations and scaling independet 

model. For this purpose, pointed at the same direction two cameras (stereo) is used instead of single-camera 

vision systems system. Palmprint informations carried to 3D space using Mutliple View Geometry 

techniques from the obtained images. Thus, the problems are eliminated in previous studies as rotation, 

translation, scaling and platform dependecy.  

Common points must be identified and mapped for capture of 3D palmprint on obtained images from 

two cameras. SURF algorithm based on Hessian matrix is determined common interest points on real-time 

snapshots of each cameras. The Levenberg-Marquardt optimization algorithm is used to minimize deviations 

from the characteristics of the cameras. Paired interest points of palmprint was considered to be 

approximately on a plane. Normal of 3D plane will give palmprint pose (point of view) according to the 

cameras.  Finally, the palmrint image were transferred to the 2D surface with affine transformation. As a 

result, palmprint patterns have been obtained for strong 2D recognition palmprint systems. 
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Abstract

In this paper, we used Hamiltonian formulation and Lie transform to investigate a strongly nonlinear

oscillator. Using Chirikovâ€ s overlap criterion we find the value of εcr at which the chaos loses its local

character and becomes global. The results of Lie transformation analysis and Chirikovâ€ s criteria for

the oscillator are compared with numerically generated Poincare Maps.
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Abstract 

 

In this study, we obtain approximate solutions of some boundary value problems by the Galerkin 

method. To demonstrate the effectiveness of the Galerkin method, we give some examples. Also, 

we compare the obtained solutions and their exact solutions by using Mathematica. 
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Abstract

In this paper we treat a gradient constrained minimization problem which has applications in me-

chanics and superconductivity [1, 2, 5]:

Find a solution y ∈ K such that (1)

J(y) = min
v∈K

J(v),

where J(v) =
1

2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx,

K = {v ∈ H1
0 (Ω)| |∇v(x)| ≤ 1 a.e. in Ω}.

Here Ω ⊂ Rn, n ≤ 3, is bounded Lipschitz domain and f ∈ L2(Ω) is given. A particular case of this

problem is the elasto-plastic torsion problem.

In order to get the numerical approximation to the solution we have developed an algorithm in an in-

finite dimensional space framework using the concept of the generalized, so called, Newton differentiation

[3,4,6]. At first we regularize the problem in order to approximate it with the unconstrained minimiza-

tion problem and to make the pointwise maximum function Newton differentiable. Afterwards, using

semismooth Newton method, we obtain continuation method in function space. For the numerical im-

plementation the variational equations at Newton steps are discretized using finite elements method. We

compare the numerical results in two-dimensional case obtained using C1-conforming and non-conforming

finite elements discretization.
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[5] Glowinski R., Lions J. and Trémolièrs R., Numerical analysis of variational inequalities, North

Holland publishing company - Amsterdam - New York - Oxford, 1981, ISBN 0444861998.

[6] Kummer B., Generalized Newton and NCP methods: Convergence, regularity, actions, Discuss.

Math. Differ. Incl. Control Optim., 2000, p.209-244

Page 125



The Finite Element Method Solution of Variable Diffusion Coefficient 

Convection-Diffusion Equations 

S.H Aydın
1
 and C. Çiftçi

2
 
 

1
Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey 

2
Department of Mathematics, Ordu University, Ordu, Turkey 

 

 

Abstract 
 

Mathematical modeling of many physical and engineering problems is defined with convection-

diffusion equation. Therefore, there are many analytic and numeric studies about convection-

diffusion equation in literature. The finite element method is the most preferred numerical 

method in these studies since it can be applied to many problems easily. But, most of the studies 

in literature are about constant coefficient case of the convection-diffusion equation. In this 

study, the finite element formulation of the variable coefficient case of the convection-diffusion 

equation is given in both one and two dimensional cases. Accuracy of the obtained formulations 

are tested on some problems in one and two dimensions. 
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Abstract

The purpose of this talk is to use a very recent three critical points theorem due to Bo-
nanno and Marano [1] to establish the existence of at least three solutions for quasilinear
second order differential equations on a compact interval [a, b] ⊂ R under appropriate hy-
potheses. We exhibit the existence of at least three (weak) solutions and, and the results are
illustrated by examples.

Keywords- Dirichlet problem; Critical point; Three solutions; Multiplicity results.
AMS subject classification: 34B15; 47J10.

1 Main results

Consider the following quasilinear two-point boundary value problem{
−u′′ = (λf(x, u) + g(u))h(u′) in (a, b),
u(a) = u(b) = 0

(1)

where [a, b] ⊂ R is a compact interval, f : [a, b] × R → R is an L1-Caratéodory function,
g : R → R is a Lipschitz continuous function with g(0) = 0, i.e., there exists a constant
L ≥ 0 provided

|g(t1)− g(t2)| ≤ L|t1 − t2|

for all t1, t2 ∈ R, h : R→]0,+∞[ is a bounded and continuous function with m := inf h > 0
and λ is a positive parameter.

Employing Theorem 3.6 of [1], we establish the existence of at least three distinct (weak)
solutions in W 1,2

0 ([a, b]) to the problem (1) for any fixed positive parameter λ belonging to
an exact interval which will be observed in the main results.

1
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We mean by a (weak) solution of problem (1), any u ∈ W 1,2
0 ([a, b]) such that∫ b

a
u′(x)v′(x)dx−

∫ b

a
[λf(x, u(x)) + g(u(x))]h(u′(x))v(x)dx = 0

for every v ∈ W 1,2
0 ([a, b]). Denote M := suph and suppose that the constant L ≥ 0 satisfies

LM(b− a)2 < 4.
We introduce the functions F : [a, b]× R→ R, H : R→ R and G : R→ R respectively,

as follows

F (x, t) =
∫ t

0
f(x, ξ)dξ for all (x, t) ∈ [a, b]×R,

H(t) =
∫ t

0

∫ τ

0

1

h(δ)
dδdτ for all t ∈ R

and

G(t) = −
∫ t

0
g(ξ)dξ for all t ∈ R.

We now formulate our main result.

Theorem 1. Assume that there exist a positive constant r and a function w ∈ W 1,2
0 ([a, b])

such that
(α1)

∫ b
a [G(w(x)) +H(w′(x))]dx > r,

(α2)

∫ b

a
sup

t∈[−
√

2M(b−a)r

4−LM(b−a)2
,

√
2M(b−a)r

4−LM(b−a)2
]

F (x,t)dx

r
<

∫ b

a
F (x,w(x))dx∫ b

a
[G(w(x))+H(w′(x))]dx

,

(α3) lim sup|t|→+∞
F (x,t)
t2

< 4−LM(b−a)2
2M(b−a)2r

∫ b
a sup

t∈[−
√

2M(b−a)r

4−LM(b−a)2
,

√
2M(b−a)r

4−LM(b−a)2
]
F (x, t)dx uniformly

respect to x ∈ [a, b].

Then, for each

λ ∈ Λ1 :=


∫ b
a [G(w(x)) +H(w′(x))]dx∫ b

a F (x,w(x))dx
,

r∫ b
a sup

t∈[−
√

2M(b−a)r

4−LM(b−a)2
,

√
2M(b−a)r

4−LM(b−a)2
]
F (x, t)dx


the problem (1) admits at least three distinct weak solutions in W 1,2

0 ([a, b]).

References

[1]G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable
functions with a weak compactness condition, Appl. Anal. 89 (2010) 1-10.

2

Page 128



The Modified Bi-quintic B-spline base functions: An Application to Diffusion Equation
S. Kutluay1 and N.M. Yağmurlu1
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Abstract

In this paper, the bi-quintic B-spline base functions are modified on a general 2-dimensional problem

and then they are applied to two-dimensional Diffusion problem in order to obtain its numerical solutions.

The computed results are compared with the results given in the literature. The error norms L2 and L∞

are computed and found to be marginally accurate and efficient.
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Abstract

In this paper, a numerical solution of the modified Burgers’ equation is obtained by a cubic B-spline

collocation method. In the solution process, a linearization technique has been applied to deal with the

non-linear term appearing in the equation. The computed results are compared with the results given in

the literature. The error norms L2 and L∞ are also computed and found to be sufficiently small.
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The Modified Kudryashov Method for Solving Some Evolution Equations 
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Abstract 

 

The study of numerical methods for solving partial differential equations and the travelling wave 

solutions of these equations  have  significant roles  in physical science over the last decades 

from both theoretical and the practical points of view. Mathematical physics   consist of many 

mathematical models which described by the nonlinear partial differential equations. The 

investigation of the travelling wave solutions of nonlinear evolution equations appears in various 

scientific fields, such as plasma physics, fluid mechanics, hydrodynamic, optical fibers, chemical 

physics. Many powerful and effective methods are used for investigating the explicit travelling 

wave solutions.  

In this paper, we have applied the modified Kudryashov method for solving some nonlinear 

evolution equations by the help of commutative algebra. This method is applicable for the other 

nonlinear partial differential equations. 

We consider the general nonlinear partial differential equation for a function u  of two variables, space  x

and time t : 

( , , , , , ,...) 0t x xx tt xtP u u u u u u                                                                        (1) 

It is useful to summarize the steps of modified Kudryashov method as follows[5]: 

Step 1. We investigate the travelling wave solutions of  Eq.(1) of the form: 

( , ) ( ),u x t u       ,kx wt                                                                      (2) 

where k and w are arbitrary constants. Then Eq.(1) reduces to a nonlinear ordinary differential equation 

of the form: 

                                                             ( , , , ,...) 0G u u u u                                                                    (3) 

Step 2. We suppose that the exact solutions of Eq.(3) can be obtained in the following form: 
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0

( ) ( ) ,
N

i

i

i

u y a Q 


                                                         (4)         

where 
1

1
Q

e



 and the function Q is the solution of equation 

                                                                     2Q Q Q                                                                                 (5) 

Step 3. According to the method, we assume that the solution of Eq.(3) can be expressed in the form 

                                                             ( ) ...N

Nu a Q                                                                                       (6) 

Calculation of value N in formula (6) that is the pole order for the general solution of Eq. (3). In order to 

determine the value of N we balance the highest order nonlinear terms in Eq. (3)  analogously as in the 

classical Kudryashov method. Supposing 
( )( ) ( )l su u   and ( ( ))p ru   are the highest order nonlinear terms 

of Eq. (3) and balancing the highest order nonlinear terms we have: 

                                                                       ,
1

s rp
N

r l




 
                                                                                       (7) 

Step 4. Substituting Eq.(4) into Eq.(3) and equating the coefficients of 
iQ  to zero, we get a system of 

algebraic equations. By solving this system, we obtain the exact solutions of Eq.(1). 
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Abstract 

In this work, we will study an inverse problem to determine corrosion in an inaccessible location 

of a metalic plate. Our study area is inside the plate metalic plate whose lower part is embedded 

therefore inacssecible. We will perform measurements on the upper part of the plate, which is 

not in contact with the ground. For this, we will send an electric field on this part and take 

measurements. This problem is modeled by a Laplace problem with mixed presence of an 

unknown term in the boundary conditions this term is an unknown function which can take 

several forms. It is this function that we will detect the presence or absence of corrosion inside 

the tube and we will then follow our steps to the top edge of the field information on the 

evolution of this corrosion. We will first formulate our problem which is an inverse problem and 

we will make a theoretical study and we will that this problem has a unique solution also this 

solution is stable. After, we will solve this problem by constructing an iterative algorithm which 

gives problems that will cross a series of impedance functions which determines the rate of 

corrosion. Finally we study the convergence and we will then make a numerical application 
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Commuting nilpotent operators with maximal rank

Semra Öztürk Kaptanoğlu
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Abstract

Let X, X̂ be commuting nilpotent matrices over a field k with nilpotency pt. We show that if X − X̂

is a certain linear combination of products of commuting nilpotent matrices, then X is of maximal rank

if and only if X̂ is of maximal rank. In the case, k is an algebraically closed field of positive characteristic

p there is an interpretation about module over group algebras.
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Finding Global minima with a new class of �lled function
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Abstract

Global Optimization problems arise in many �elds of science and technology [2-4]. Filled function

method is a type of e¢ cient methods to obtain the global solution of a multivariable function. The key

idea of the �lled function method is to leave from a current local minimizer x� to a lower minimizer x� of

the original objective function f(x) with the auxiliary function P (x) constructed at the local minimizer.

This method was introduced in Ge�s paper [1] for continuous global optimization problem, the �rst �lled

has the form

p(x; r; �) =
1

r + f(x)
exp

 
�kx� x

�
kk
2

�2

!
where r and � are two adjustable parametres.

This paper gives a new de�nition of the �lled function. It shows that the �lled function given in some

paper are the special forms of this �lled functions.
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Abstract 

 

In this study, a semi-Markovian random walk with delay and a discrete interference of 

chance  X(t)  is constructed. The weak convergence theorem is proved for the ergodic 

distribution of the process X(t) and the limit form of the ergodic distribution is found, when the 

random variables  n
, n 0   have Pareto distribution with parameters ( , )   where the random 

variables 
n

  describe the discrete interference of chance. 
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Abstract

In this talk, the following nonstationary Novier-Stokes like equation with
variable coe¢ cients

@u

@t
�A" (x)u+ (u:r)u+r' = f (x; t) ; div u = 0; x 2 G; t 2 (0; T ) ;

L1"u =
�X
i=0

"�i�i
@iu

@xin

�
x
0
; 0; t

�
= 0, � 2 f0; 1g ;

u (x; 0) = a (x) ; x 2 Rn+; t 2 (0; T ) ;

is considered, where

Rn+ =
n
x 2 Rn; xn > 0; x =

�
x
0
; xn

�
; x

0
= (x1; x2; :::; xn�1)

o
;

A" (x)u = "
nX
k=1

ak (x)
@2u

@x2k
; �i =

1

2

�
i+

1

q

�
, q 2 (1;1) ,

" is a small positive parameter, �i are complex numbers, ak are continious
functions on Rnn;

u = u" (x) = (u1" (x; t) ; u2" (x; t) ; :::; un" (x; t))

are represent the unknown velocity, f = (f1 (x; t) ; f2 (x; t) ; :::; fn (x; t)) repre-
sents a given external force and a denotes the initial velocity.
The existence, uniqueness and Lp estimates of solution the above problem

is derived.
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  A New Spline Approximation for the Solution of One-space 

Dimensional Second Order Non-linear Wave Equations   
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Abstract: In this paper, we propose a new three-level implicit nine point 

compact finite difference formulation of order two in time and four in space 

directions, based on non-polynomial spline in compression for the solution of 

one-space dimensional second order non-linear hyperbolic partial differential 

equations with variable coefficients and significant first order space derivative 

term. We describe the Mathematical formulation procedure in details and also 

discussed the stability. Numerical results are provided to justify the usefulness 

of the proposed method. 

  

Keywords: Non-polynomial spline in compression; Non-linear Wave equation; 

Maximum absolute errors                                                
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An error correction method for solving stiff initial value problems based on a
cubicC1-spline collocation method
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Abstract

For solving nonlinear stiff initial value problems, we develop an improved error correction method (IECM) which
originates from the error corrected Euler methods (ECEM) recently developed by the authors (see [17, 18]) and
reduces the computational cost and further enhances the stability for the ECEM. We use the stabilized cubicC1-spline
collocation method instead of the Chebyshev collocation method used in ECEM for solving the asymptotic linear
ODE for the difference between the Euler polygon and the true solution. It is proved that IECM isA-stable, a semi-
implicit one-step method, and of order 4 with only one evaluation of the Jacobian at each integration step. Also,
we use the iteration process of the Lobatto IIIA method developed by [13] for solving the induced matrix system.
It is shown that this iteration process does not require such the nonlinear function evaluation as the implicit method
does and hence it reduces the numerical computational cost efficiently. Numerical evidence is provided to support the
theoretical results with several stiff problems.

Keywords: Euler polygon, CubicC1-spline collocation method, Lobatto IIIA method, Error correction method, Stiff

initial value problem
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Abstract

Certain problems of modern physics and technology can be effectively described in terms of nonlocal

problem for partial differential equations. These nonlocal conditions arise mainly when the data on the

boundary cannot be measured directly. Methods of solutions of nonlocal boundary value problems for

partial differential equations and partial differential equations of mixed type have been studied extensively

by many researchers in [1-5].

In this paper, numerical solutions of difference schemes of multipoint nonlocal boundary value problem

for multidimensional hyperbolic-parabolic equation with Neumann condition are considered. The first

and second orders of accuracy difference schemes are established. The theoretical statements for the

solution of these difference schemes are supported by results of numerical experiments.

References

[1] Ashyralyev A. and Aggez N., A note on difference schemes of the nonlocal boundary value problems

for hyperbolic equations, Num. Func. Anal. & Opt., 25(5-6), 439-462, 2004.

[2] Ashyralyev A. and Gercek O., Nonlocal boundary value problems for elliptic-parabolic differential

and difference equations, Dis. Dyn. in Nat. & Soc., 2008(2008), 1-16, 2008.

[3] Ashyralyev A. and Ozdemir Y., On stable implicit difference scheme for hyperbolic-parabolic

equations in a Hilbert space, Num. Math. for Par. Diff. Eqn., 25(5), 1110-1118, 2009.

[4] Ashyralyev A. and Yildirim O., On multipoint nonlocal boundary value problems for hyperbolic

differential and difference equations, Tai. Jour. of Math.., 14(1), 165-164, 2010.

[5] Koksal M. E., Recent developments on operator-difference schemes for solving nonlocal BVPs for

the wave equation, Dis. Dyn. in Nat. & Soc., 2011(2011), 1-14, 2011.

Page 142



Classification of exact solutions for the Pochhammer-Chree equations 

Y. Gurefe
1
, Y. Pandir

1
 and E. Misirli

2 

1
Department of Mathematics, Bozok University, Yozgat, Turkey 

2
Department of Mathematics, Ege University, Izmir, Turkey 

 

 

Abstract 

In this study, exact solutions to the Pochhammer-Chree equations are obtained by using complete 

discrimination system. These solutions can be reduced to soliton solution, rational and elliptic 

function solutions. Also, we propose a more general method for the generalized nonlinear partial 

differential equations. 

Keywords: Trial equation method, Soliton solutions, Elliptic function solutions. 
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Abstract 

The talk will deal with when every function in a variable exponent Sobolev space can be 

approximated by a more regular function, such as a smooth or Lipschitz continuous function.  

Many researchers have made contributions , but still remain substantial gaps in our 

understanding of this intricate question. A discussion on methods also will take place. I will 

also  give some my  results for the density in variable exponent Sobolev spaces . 
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Abstract

A numerical method is proposed for solving hyperbolic-Schrödinger partial di¤erential equations with

nonlocal boundary condition. The �rst and second orders of accuracy di¤erence schemes are presented.

A procedure of modi�ed Gauss elimination method is used for solving these di¤erence schemes in the case

of a one-dimensional hyperbolic-Schrödinger partial di¤erential equations. The method is illustrated by

numerical examples.
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New generalized hyperbolic functions to find exact solution of the nonlinear partial

differential equation

Y. Pandir1 and H. Ulusoy2
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Abstract

In this article, we first time define new functions (called generalized hyperbolic functions) and devise

new kinds of transformation (called generalized hyperbolic function transformation) to construct new

exact solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function

transformation of the generalized KdV equation. We obtain abundant families of new exact solutions of

the equation and analyze the properties of this by taking different parameter values of the generalized

hyperbolic functions. As a result, we find that these parameter values and the region size of the inde-

pendent variables affect some solution structure. These solutions may be useful to explain some physical

phenomena.

1 Introduction

To construct exact solutions to nonlinear partial differential equations, some important methods have

been defined such as Hirota method, tanh-coth method, the exponential function method, (G′/G)-

expansion method, the trial equation method, and so on [1-15]. There are a lot of nonlinear evolution

equations that are integrated using the various mathematical methods. Soliton solutions, compactons,

singular solitons and other solutions have been found by using these approaches. These types of solutions

are very important and appear in various areas of applied mathematics. In Section 2, we give the defi-

nition and properties of generalized hyperbolic functions. In Section 3, as applications, we obtain exact

solution of the generalized KdV equation

(ul)t + αu(un)x + β[u(un)xx]x + γu(un)xxx = 0. (1)

2 The definition and properties of the symmetrical hyperbolic

Fibonacci and Lucas functions

In this section, we will define new functions which named the symmetrical hyperbolic Fibonacci and

Lucas functions for constructing new exact solutions of NPDEs, and then study the properties of these

functions.

Definition 2.1 Suppose that ξ is an independent variable, p, q and k are all constants. The generalized

hyperbolic sine function is

sinha(ξ) =
pakξ − qa−kξ

2
, (2)

generalized hyperbolic cosine function is

cosha(ξ) =
pakξ + qa−kξ

2
, (3)
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generalized hyperbolic tangent function is

tanha(ξ) =
pakξ − qa−kξ

pakξ + qa−kξ
, (4)

generalized hyperbolic cotangent function is

cotha(ξ) =
pakξ + qa−kξ

pakξ − qa−kξ
, (5)

generalized hyperbolic secant function is

secha(ξ) =
2

pakξ + qa−kξ
, (6)

generalized hyperbolic cosecant function is

cosecha(ξ) =
2

pakξ − qa−kξ
, (7)

the above six kinds of functions are said generalized new hyperbolic functions. Thus we can prove the

following theory of generalized hyperbolic functions on the basis of Definition 2.1.

Theorem 2.1. The generalized hyperbolic functions satisfy the following relations:

cosh2a(ξ)− sinh2a(ξ) = pq, (8)

1− tanh2a(ξ) = pq.sech2
a(ξ), (9)

1− coth2a(ξ) = −pq.cosech2
a(ξ), (10)

secha(ξ) =
1

cosha(ξ)
, (11)

cosecha(ξ) =
1

sinha(ξ)
, (12)

tanha(ξ) =
sinha(ξ)

cosha(ξ)
, (13)

cotha(ξ) =
cosha(ξ)

sinha(ξ)
. (14)

The following just part of them are proved here for simplification.

Theorem 2.2. The derivative formulae of generalized hyperbolic functions as following

d(sinha(ξ))

dξ
= k ln a cosha(ξ), (15)

d(cosha(ξ))

dξ
= k ln a sinha(ξ), (16)

d(tanha(ξ))

dξ
= kpq ln a sech2

a(ξ), (17)

d(cotha(ξ))

dξ
= −kpq ln a cosech2

a(ξ), (18)

d(secha(ξ))

dξ
= −k ln a secha(ξ) tanha(ξ), (19)

d(cosecha(ξ))

dξ
= −k ln a cosecha(ξ) cotha(ξ). (20)

Proof of (17): According to (15) and (16), we can get

d(tanha(ξ))

dξ
=

(
sinha(ξ)

cosha(ξ)

)′

=
(sinha(ξ))

′ cosha(ξ)− (cosha(ξ))
′ sinha(ξ)

cosh2a(ξ)

Page 147



=
k ln a cosh2a(ξ)− k ln a sinh2a(ξ)

cosh2a(ξ)
= kpqsech2

( ξ), (21)

Similarly, we can prove other differential coefficient formulae in Theorem 2.2.

Remark 2.1. We see that when p = 1, q = 1, k = 1 and a = e in (2)-(7), new generalized hyperbolic

function sinha(ξ), cosha(ξ), tanha(ξ), cotha(ξ), secha(ξ) and cosecha(ξ), degenerate as hyperbolic func-

tion sinh(ξ), cosh(ξ), tanh(ξ), coth(ξ), sech(ξ) and cosech(ξ), respectively. In addition, when p = 0 or

q = 0 in (2)-(7), sinha(ξ), cosha(ξ), tanha(ξ), cotha(ξ), secha(ξ) and cosecha(ξ), degenerate as exponen-

tial function 1
2pa

k(ξ), ±1
2qa

−k(ξ), 2pa−k(ξ), ±2qak(ξ) and ±1, respectively.
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ABSTRACT 

 

 The definitions of affine curve, affine arclength and affine types of an affine curve are 

given in 2R . Affine invariant parametrization of an affine curve which is invariant under the 

affine group is introduced. The complete system of affine differential invariants for affine 

plane curves is obtained and we show that these invariants are independent. The conditions of 

equivalence of two affine curves is obtained in terms of affine differential invariants in 2R .    

 
Keywords: Affine geometry, affine curve, affine differential invariants, affine 

equivalence. 
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Abstract 

In this research, we defined a new approach with respect to the trial equation method. This 

method is applied for constructing the soliton solutions, rational function solutions and elliptic 

function solutions. Also, we conclude that the modified trial equation method can be extended to 

solve other physical problems in nonlinear science.  

Keywords: Modified trial equation method, Soliton solutions, Elliptic function solutions. 
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Abstract.
Hyperbolic partial differential equations are used in many branches of physics, engineering and several areas of science,

e.g. electromagnetic, electrodynamic, hydrodynamics, elasticity, fluid flow and wave propagation [1, 2, 3]. There is a great
deal of work for solving these type of problems numerically and their stability in various functional spaces has received a
great deal of importance. However, most of these works are studied in one-dimensional space (see [4, 5, 6, 7]). There are
some studies about the numerical solution of two-dimensional hyperbolic equations with the collocation method or rational
differential quadrature method [8, 9].

Let Ω be the unit open cube in then-dimensional Euclidean spaceRn (0 < xk < 1, 1≤ k ≤ n) with the boundaryS,
Ω̄ = Ω∪S. In [−1,1]×Ω the mixed problem for the multidimensional integral-differential equation of the hyperbolic type































vtt −

n

∑
r=1

(ar(x)Vxr )xr
=

t
∫

−t

n

∑
r=1

(br(p,x)vxr )xr
d p+ f (t,x), −1≤ t ≤ 1, x = (x1, . . . ,xn) ∈ Ω,

v(t,x) = 0, x ∈ S, −1≤ t ≤ 1,

v(0,x) = ϕ(x), vt(0,x) = ψ(x), x ∈ Ω̄

(1)

is considered. In [10] it was proved that the problem (1) has a unique smooth solutionv(t,x) for the smooth functions
ar(x) ≥ δ > 0, r = 1, . . . ,n, ϕ(x), ψ(x), x ∈ Ω̄ and f (t,x), b(t,x), t ∈ (−1,1), x ∈ Ω. Moreover, the first order of accuracy
difference scheme was investigated.

In the present paper the second order of accuracy difference scheme approximately solving the problem (1) is studied. The
stability estimates for the solution of this difference scheme are established. Theoretical results are supported by numerical
examples.

Keywords: Finite Difference Method; Integral-Differential Equation of the Hyperbolic Type
PACS: 02.60.Lj, 02.60.Nm, 02.70.Bf, 87.10.Ed
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Abstract

In this work, in terms of boundary values all normal extensions of the minimal operator generated

by a linear singular differential-operator expression for first order with operator coefficients in Hilbert

space of vector-functions in a right half-infinite interval are described. Later on, a point spectrum of such

extensions has been investigated.
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[8] E. Bairamov, R. Öztürk Mert and Z. Ismailov, Selfadjoint extensions of a singular differential

operator, J. Math. Chem., 50(5), 1100-1110, 2012.
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Abstract

Pollution is a major threat for our environment. Monitoring pollution is the �rst step to save envi-

ronment and has become possible with use of di¤erential equations. This study includes the problem of

pollution of three lakes connected with pipes or channels [4]. Consider the following mathematical model

describing the pollution of a system of lakes [1-3] :

8>>><>>>:
dx1
dt =

F13
V3
x3(t) + p(t)� F31

V1
x1(t)� F21

V1
x1(t)

dx2
dt =

F21
V1
x1(t)� F32

V2
x2(t)

dx3
dt =

F31
V1
x1(t) +

F32
V2
x2(t)� F13

V3
x3(t)

(1)

The approximate solutions are obtained with Reproducing Kernel Hilbert Space Method [5-6] for

three di¤erent models: impulse, step and sinusoidal. The absolute errors are calculated by comparing

the numerical results to the analytic results. The errors are seen to be acceptable. All of the numerical

computations have been calculated on a computer programme with MATHEMATICA .
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The q analogue of the limit case of bernstein type operators
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Abstract In the present paper we introduce a q-analogue of the Bernstein-typeoperators which is

defined in cite{4}. We estimate moments,

establish direct theorems and rate of convergence in terms of themodulus of continuity.

In 1997 Philips [1] proposed the following q-analogue of the well-known Bernstein polynomials,which

for each positive integer n and f ∈ C [0, 1] ,are defined as,

Bn,q (f ;x) =
n∑

k=0

f

(
[k]

[n]

)
pnk (q;x) .

After Philips several researchers have studied convergence properties of q-Bernstein polynomials

Bn,q (f ;x) . We can refer to readers these important searchs in [12, 13, 14, 15] .

P.E. Parvanov , B. D. Popov in 1994 mention Bernstein type operators and examined direct theo-

rems and Jackson type inequality and some approximation properties. This motives us to examine and

introduce q analogue of Bernstein type operators.

the class of q-Bernstein operators discussed in this paper are given for natural n by

Un,q (f ;x) = [n− 1]

n∑
k=1

q1−kpnk (q;x)

∫ 1

0

f (t) pn−2,k−1 (q; qt) dqt+ f (0) pn,0 (q;x)

=
n∑

k=1

bnk (q;x) pn,k (q;x) . (1)

where pn,k (q;x) =
[
n
k

]
xk (1− x)

n−k
q and the quantity bnk (q;x) = q1−k

∫ 1

0

[n− 1] f (t) pn−2,k−1 (q; qt) dqt

for 1 ≤ k ≤ n in the operators Un,q (f ;x) takes place of f
[
k
n

]
in Bn,q (f ;x) the Bernstein polynomials and

bnk (q;x) satisfies bn,0 (f) = f (0) and bn,n (f) = f (1) .
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