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Abstract

In this paper we treat a gradient constrained minimization problem which has applications in me-

chanics and superconductivity [1, 2, 5]:

Find a solution y ∈ K such that (1)

J(y) = min
v∈K

J(v),

where J(v) =
1

2

∫
Ω

|∇v|2dx−
∫

Ω

fvdx,

K = {v ∈ H1
0 (Ω)| |∇v(x)| ≤ 1 a.e. in Ω}.

Here Ω ⊂ Rn, n ≤ 3, is bounded Lipschitz domain and f ∈ L2(Ω) is given. A particular case of this

problem is the elasto-plastic torsion problem.

In order to get the numerical approximation to the solution we have developed an algorithm in an in-

finite dimensional space framework using the concept of the generalized, so called, Newton differentiation

[3,4,6]. At first we regularize the problem in order to approximate it with the unconstrained minimiza-

tion problem and to make the pointwise maximum function Newton differentiable. Afterwards, using

semismooth Newton method, we obtain continuation method in function space. For the numerical im-

plementation the variational equations at Newton steps are discretized using finite elements method. We

compare the numerical results in two-dimensional case obtained using C1-conforming and non-conforming

finite elements discretization.
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