Compact and Fredholm Operators on Matrix Domains of Triangles in the Space of Null Sequences

E. Malkowsky

Department of Mathematics, Fatih University, Istanbul, Turkey Department of Mathematics, University of Giessen, Giessen, Germany

Abstract The matrix domain X_A of an infinite matrix $A = (a_{nk})_{n,k=0}^{\infty}$ of complex numbers in a subset X of the set ω of all complex sequences is the set of all $x = (x_k)_{k=0}^{\infty} \in \omega$ for which the series $A_n x = \sum_{k=0}^{\infty} a_{nk} x_k$ converge for all n and $Ax = (A_n x)_{n=0}^{\infty} \in X$. Also, if X and Y are subsets of ω then (X, Y) denotes the set of all infinite matrices that map X into Y, that is, $A \in (X, Y)$ if and only if $X \subset Y_A$. Let c_0 denote the set sequences $x \in \omega$ that converge to zero, and $T = (t_{nk})_{n,k=0}^{\infty}$ and $\tilde{T} = (\tilde{t}_{nk})_{k,k=0}^{\infty}$ be triangles, that is, $t_{nk} = \tilde{t}_{nk} = 0$ for k > n and $t_{nn} = \tilde{t}_{nn} \neq 0$ (n = 0, 1, ...). We characterise the class $((c_0)_T, (c_0)_{\tilde{T}})$. Furthermore we obtain an explicit formula for the Hausdorff measure of noncompactness of operators L_A given by a matrix $A \in (c_0)_T, (c_0)_{\tilde{T}}$, that is, for which $L_A(x) = Ax$ for all $x \in (c_0)_T$. From this result, we obtain a characterisation the class of compact operators given by matrices in $((c_0)_T, (c_0)_{\tilde{T}})$. Finally we give a sufficient condition for an operator given by a matrix to be a Fredholm operator on $(c_0)_T$.

References

[1] Djolović I. and Malkowsky E., A note on compact operators on matrix domains, Journal of Mathematical Analysis and Applications, 340(1), 291–303, 2008

[2] Djolović I. and E. Malkowsky, Matrix transformations and compact operators on some new m^{th} order difference sequences, Applied Mathematics and Computations, 198(2), 700–714, 2008

[3] de Malafosse B. and Rakočević V., Application of measure of noncompactness in operators on the spaces s_{α} , s_{α}^{0} , s_{α}^{c} , ℓ_{α}^{p} , Journal of Mathematical Analysis and Applications, 323(1), 131–145, 2006

[4] Malkowsky E. and Rakočević V., An Introduction into the Theory of Sequence Spaces and Measures of Noncompactness, Zbornik radova, Matematički institut SANU, Belgrade, 9(17), 143–234, 2000

[5] Malkowsky E. and Rakočević V., On matrix domains of triangles, Applied Mathematics and Computations, 189(2), 2007, 1146–1163

[6] M.Schechter, Principles of Functional Analysis, Academic Press, New York and London, 1973

[7] A. Wilansky, Summability through Functional Analysis, North–Holland Mathematics Studies No. 85, North–Holland, Amsterdam, New York, Oxford, 1984