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Abstract The matrix domain XA of an infinite matrix A = (ank)∞n,k=0 of complex numbers in a

subset X of the set ω of all complex sequences is the set of all x = (xk)∞k=0 ∈ ω for which the series

Anx =
∑∞
k=0 ankxk converge for all n and Ax = (Anx)∞n=0 ∈ X. Also, if X and Y are subsets of ω

then (X,Y ) denotes the set of all infinite matrices that map X into Y , that is, A ∈ (X,Y ) if and only

if X ⊂ YA. Let c0 denote the set sequences x ∈ ω that converge to zero, and T = (tnk)∞n,k=0 and

T̃ = (t̃nk)∞k,k=0 be triangles, that is, tnk = t̃nk = 0 for k > n and tnn = t̃nn 6= 0 (n = 0, 1, . . . ). We

characterise the class ((c0)T , (c0)T̃ ). Furthermore we obtain an explicit formula for the Hausdorff measure

of noncompactness of operators LA given by a matrix A ∈ (c0)T , (c0)T̃ ), that is, for which LA(x) = Ax

for all x ∈ (c0)T . From this result, we obtain a characterisation the class of compact operators given by

matrices in ((c0)T , (c0)T̃ ). Finally we give a sufficient condition for an operator given by a matrix to be

a Fredholm operator on (c0)T .
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[3] de Malafosse B. and Rakočević V., Application of measure of noncompactness in operators on the

spaces sα, s0α, scα, `pα, Journal of Mathematical Analysis and Applications, 323(1), 131–145, 2006
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