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Abstract  
This paper presents a multivariate optimization technique for the numerical simulation of continuous dynamical systems whose 
parameters, functional forms and/or initial conditions are modeled by fuzzy distributions. Fuzzy differential equation (FDE) is 
interpreted by using the strongly generalized differentiability concept and is shown that by this concept any FDE can be 
transformed to a system of ordinary differential equations (ODEs). By solving the associate ODEs one can find solutions for 
FDE. This approach has an inherited drawback of increasing uncertainty at each instance of time generally with nonlinear 
functional forms. Here we present a methodology to numerically simulate interval calculus and implements a new approach to 
the numerical integration of fuzzy dynamical systems, where the propagation of imprecision as a fuzzy distribution in the phase 
space is solved by a constrained multivariate optimization technique. Numerical simulations of some fuzzy dynamical systems 
(viz. Lotka Volterra model, Lorenz model) are also reported. Finally ecological degradation in wetlands of India is modeled by 
fuzzy initial value problem and some sustainable solution is proposed. 
Keywords: Fuzzy continuous differential system, Numerical solution, Fuzzy initial value problem (FIVP), Multivariate 
optimization, Property of sufficiency of vertices (PSV), Ecological degradation model. 

 
Fuzzy Dynamical Systems 

Let us consider the FDE with initial value condition: 
�′(�) =�(�,�) , �(�0) = �0                                                                                   (1) 

Where �: [�0,�]×ℝ�→ℝ� is a continuous fuzzy mapping and �0 ∈ℝ� and � is positive number or infinity with x0 

fuzzy initial condition defined on the n-dimensional domain Y. We interpret this notation as a fuzzy extension of an 
ordinary differential equation. We consider a fuzzy differential equation as a deterministic differential equation 
where some coefficients or initial condition are uncertain and represented in a possibilistic form: its solution is then 
the time evolution of a fuzzy region of uncertainty which Corresponds to the possibility distribution in the phase 
space.  
Let us suppose α-cut of functions x(�), �0, �(�,�) are the following form:  
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Then we have two following cases:  
Case (I): If x(�) is 1-differentiable then solving FIVP (1) translates into the following algorithm: 
Step (i) Solving the following system of ODEs:  

00 )(),,,(),,()( xtxxxtFxxtftx ===′ αααα         
(2) 

00 )(),,,(),,()( xtxxxtGxxtftx ===′ αααα                                                                                   

Step (ii) Ensure that the solution [x α (t), 
  ����α(t)] and [x’ α (t), 
 � ���� α(t)] are valid level sets. 
Step (iii) By using the representation theorem again, we construct a 1-solution (�) such that 
[x(t)]α = [x α(t), 
  ����α(t)],  for all α∈[0,1]. 
 
Case (II): If x(�) is 2-differentiable then solving FIVP (1) translates into the following algorithm:  
Step (i) Solving the following system of ODEs: 

00 )(),,,(),,()( xtxxxtGxxtftx ===′ αααα       
(3) 
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00 )(),,,(),,()( xtxxxtFxxtftx ===′ αααα                                                                             

Step (ii) Ensure that the solution [x α (t), 
  ����α(t)] and [x’ α (t), 
 � ���� α(t)] are valid level sets. 
Step (iii) By using the representation theorem again, we construct a 1-solution �(�) such that 
[x(t)]α = [x α(t), 
  ����α(t)],  for all α∈[0,1]. 

 
Problem to Solve Numerically 

To solve numerically the system (2) and (3) it might seem intuitive to apply the interval mathematics (Moore, 1966) 
directly to the numerical algorithms for deterministic systems. However,(Bonarini, Bontempi, [25]) showed that a 
straightforward use of interval mathematics for the resolution of fuzzy (or interval) differential equation can produce 
incorrect results. This is due to the fact that the fuzzy (and interval) formalism is unable to represent the interaction 
that the differential equation establishes between variables: as a consequence, spurious values are introduced into the 
solution and the evolution of the system may reach region where no numerical solution exists. Figure 1 illustrates 
the problem. The figure plots the evolution of the initial condition (i.e. the rectangle ABCD) in a oscillatory 2nd 
order system: if we represent the uncertain state of the dynamical system at time t' in the interval formalism, we 
introduce in the solution spurious points (black regions) which are not the evolution of points belonging to ABCD. 

 
Fig. 1 Introduction of spurious trajectories in the non interacting simulation of an oscillating system 
 
This approach is instead the following: the initial condition of the interval differential equation defines a hyper cube. 
We call this n-cube the region of uncertainty of the system at time t=0. To solve the IDE means to compute the 
evolution in time of the region of uncertainty. 
Bonarini and Bontempi proved that under general conditions of continuity and differentiability it is sufficient to 
compute the evolution of the external surface of the uncertainty region (Bonarini, Bontempi, [25]). This leads to the 
conclusion that it is sufficient to calculate the trajectories of the points belonging to the external surface of the region 
of uncertainty to know the evolution in time of the region itself. However, the quantity of trajectories to be 
computed is still infinite, also if it is of a lower order. 

 
Numerical Solution Algorithm using Property of Sufficiency of Vertices 

The problem remains how to sample, in the most convenient way, the external surface of the region of uncertainty 
during its time evolution. Let us remind that the performance of a multivariable optimization algorithm may be 
greatly increased by providing to it the partial derivatives (gradient) of the function value respect to the arguments: 
in our case we should provide the derivatives at time t* of xi respect to x0∈x0α. To obtain these derivatives we use 
the connection matrix (Moore, 1966), as follows. We denote by x(t, x0) the n-dimensional, real vector solution to the 
numeric initial value problem. We define the connection matrix for the solution x(t, x0) as the matrix C(t, x0) with 
elements 

Cij= �������

��

� �x= ��                                                                     (5) 

We denote by J(t,x0) the Jacobian matrix of the vector function evaluated at x(t,x0). 
The matrix J(t, x0) has elements 

Jij(t, x0)  =
�������

��

� �x=x(t, ��)                   (6) 

Moore (1966) demonstrated that    
  �������

�
 = J(t, x0) .C(t, x0)                                                                 (7) 

with C(0, x0) = I where I is the identity matrix. 



Now in the next time state the evolution of the surface points of region of uncertainty will generate new region of 
uncertainty. So property of sufficiency of vertices is used to identify surface points and reduce the order of the 
sample space. Let us consider a generic parametric line L in the n-D space whose equations are 
                                    ��= ��(v)     v∈ [��, ��], i = 1,2,…...,n. 

If ��(v), i = 1,2,….,n are monotonous functions of v, it is sufficient to know the coordinates (��(��), �  
(��), ….,�!(��)) and (�� (��), �  (��), ….,�! (��)) of the extremes P0 and P1 of L to compute ��(v)    i = 1, 
2, ….,n. We say that L satisfies the property of sufficiency of the vertices (p.s.v) if it is sufficient to know 
the values of L at the extremes P0 and P1 to compute the intervals. The following necessary condition for 
the p.s.v. holds: for any pair of points 
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The elements of the matrix give the sensitivity of the solution components xi(t, x0) with respect to small changes of 
the initial values (x0)i. By coupling the IDE system with the set of n2 equations coming from the connection matrix 
differential system we obtain an augmented differential system which gives at time t* the values of the variables xi 
and the values of the derivatives of the variables xi respect to the initial condition x0. We may then use these 
combined values as the value and the gradient of the function to be maximized (or minimized). 
Let Ω ∈ ℝn  be the region of uncertainty in the phase space at a time t* and ��####$ ∈ Ω be the initial value vector. Then 
to get the region of uncertainty at any time instance t we need to solve basically the following multivariate 
optimization problem 
For each state variable xi :  
Maximize (minimize) xi (t, ��####$) 
Subject to 
                ��####$ ∈Ω. 
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