H. Akın¹, I. Şiap² and M.E. Koroğlu²

¹Department of Mathematics, Faculty of Education, Zirve University, Istanbul, Turkey ²Department of Mathematics, Yildiz Technical University, Istanbul, Turkey

Abstract

Cellular automata are simple mathematical representation of complex dynamical systems. Therefore there are several applications of cellular automata in many areas such as coding, cryptography, VLSI design etc. [1,2]. In this study, a recurrence relation for computation minimal polynomial of transition matrix of linear elementary rule 150 with reflective boundary condition [3] was obtained. Then, the maximum transient and cycle lengths of this rule were calculated by algorithm in [4].

Acknowledgements: The work is supported by TÜBİTAK (Project Number: 110T713).

References

[1] P.P. Chaudhuri, D.R. Choudhury, S. Nandi and S. Chattopadhyay, Additive Cellular Automata Theory and Applications, Vol.1, (IEEE Computer Society Press, 1997 Los Alamitos).

[2] J. L. Schiff, Cellular Automata: A Discrete View of the World (Wiley Sons, Inc., 2008 Hoboken, New Jersey).

[3] H. Akın, F. Şah, I. Şiap, On 1D reversible cellular automata with reflective boundary over the prime field of order p, International Journal of Modern Physics C, **23** (1), pp. 1-13, (2012)

[4] J. Stevens, R. Rosensweig, A. Cerkanowicz, Transient and cyclic behavior of cellular automata with null boundary conditions, J. Statist. Phys. 73, 159.174 (1993).