Radial Basis Functions Method for determining of unknown coefficient in parabolic

equation

E. Can

Department of Physics, Kocaeli University, Kocaeli 41380, Turkey
Electro Optic Systems Engineering, Kocaeli University, Kocaeli 41380, Turkey

Abstract

In this paper, we consider an inverse problem of finding unknown source parameterp (t) and $u(x, t)$ satisfy equation

$$
\begin{equation*}
u_{t}=u_{x x}+p(t) u+f(t, x), \quad 0 \leqslant x \leqslant 1,0<t \leqslant T, \tag{1}
\end{equation*}
$$

with the initial-boundary conditions

$$
\begin{array}{cc}
u(x, 0)=\varphi(x), & 0 \leqslant x \leqslant 1 \\
(0, t)=\mu_{1}(t), & 0<t \leqslant T \\
u(1, t)=\mu_{2}(t), & 0<t \leqslant T \tag{4}
\end{array}
$$

subject to the overspecification over the spatial domain

$$
\begin{equation*}
u\left(x^{*}, t\right)=E(t), \quad 0<x^{*} \leqslant 1,0<t \leqslant T \tag{5}
\end{equation*}
$$

where $f(x, t), \varphi(x), \mu_{1}(t), \mu_{2}(t)$ and $E(t) \neq 0$ are known functions, x^{*} is a fixed prescribed interior point in $(0,1)$. If $p(t)$ is known then direct initial boundary value problem $(1)-(4)$ has a unique smooth solution $u(x, t)$ [1]. If u represent a temperature distribution, then $(1)-(4)$ can be interpreted as a control problem with source parameter. Based on the idea of the radial basis functions (RBF) approximation , a fast and highly accurate meshless method is developed for solving an inverse problem with a control parameter [2]. Some numerical examples using the proposed algorithm are presented.

References

[1] Isakov V., Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Springer-Verlag, vol. 127, 1997.
[2] Limin Ma and Zongmin Wu, Radial Basis functions method for parabolic inverse problem, Int. J. of Computer Math., 88(2), 383-395, 2011.

