On the Solution of a Three Dimensional Convection Diffusion Problem

Abdullah Said Erdogan ve Mustafa Alp

 $\label{eq:decomposition} Department of Mathematics, Fatih University, 34500, Buyukcekmece, Istanbul, Turkey$

Department of Mathematics, Faculty of Arts and Sciences, Duzce University 81620, Duzce, Turkey,

Abstract

In this paper, the Rothe difference scheme and the Adomian Decomposition method are presented for obtaining the approximate solution of three dimensional convection-diffusion problem. Stability estimates for the difference problem is presented.

Keywords: Finite difference method, Adomian Decomposition Method, Convection-diffusion equation

1 Introduction

In many important applications in engineering such as transport of air and water pollutants, convection-diffusion problems arises. An example of this kind of problem is a forced heat transfer. Several numerical methods are proposed for solving three dimensional convection diffusion problem (see [1]-[11] and the references therein). In this paper, we focus on the following mixed problem for the three dimensional convection-diffusion equation

$$\begin{cases}
\frac{\partial u}{\partial t} + b_1(x, y, z) \frac{\partial u}{\partial x} + b_2(x, y, z) \frac{\partial u}{\partial y} + b_3(x, y, z) \frac{\partial u}{\partial z} \\
- \left(a_1 \frac{\partial^2 u}{\partial x^2} + a_2 \frac{\partial^2 u}{\partial y^2} + a_3 \frac{\partial^2 u}{\partial z^2} \right) = f(t, x, y, z), \text{ in } \Omega \times P, \\
u(x, y, z, t) = 0, \text{ on } \partial\Omega \times \overline{P}, \\
u(x, y, z, 0) = g(x, y, z), \text{ in } \overline{\Omega},
\end{cases} \tag{1}$$

where $\Omega = (0,1) \times (0,1) \times (0,1)$, P = (0,T), $b_1(x,y,z)$, $b_2(x,y,z)$, $b_3(x,y,z)$, g(x,y,z) are sufficiently smooth functions and a_1, a_2, a_3 are positive constants. Here, $b_1(x,y,z)$, $b_2(x,y,z)$, $b_3(x,y,z)$, a_1 , a_2 and a_3 are velocity components of the fluid in the directions of the axes at the point (x,y,z) at time t.

References

- M. M. Gupta, and J. Zhang, Applied Mathematics and Computation 113, 249-274 (2000).
- [2] V. John, and E. Schmeyer, Comput. Methods Appl. Mech. Engrg 198, 475–494 (2008).

- [3] Y. Ma, and Y. Ge, Applied Mathematics and Computation 215, 3408–3417(2010)
- [4] J. Zhang, L. Gea, and J. Kouatchou, *Mathematics and Computers in Simulation* **54**, 65–80(2000)
- [5] P. Theeraek, S. Phongthanapanich, and P. Dechaumphai Mathematics and Computers in Simulation 82, 220–233(2011)
- [6] Xue-Hong Wu, Zhi-Juan Chang, Yan-Li Lu, Wen-Quan Tao, and Sheng-Ping Shen Engineering Analysis with Boundary Elements 36, 1040–1048 (2012).
- [7] Hans-Görg Roos, and H. Zarin, Journal of Computational and Applied Mathematics 150, 109–128 (2003).
- [8] K.J. in't Hout, and B.D. Welfert, Applied Numerical Mathematics 57, 19–35(2007).
- [9] F.S.V. Bazan, Applied Mathematics and Computation 200, 537–546 (2008).
- [10] M. Dehghan, Mathematical Problems in Engineering 2005(1), 61–74 (2005).
- [11] Y.Tanaka, T.Honma and I. Kaji, Appl. Math. Modelling 10, 170-175 (1986).
- [12] P.E. Sobolevski, Dokl. Akad. Nauk. SSSR 201(5), 1063-1066 (1971).
- [13] Kh. A. Alibekov, and P. E. Sobolevskii, *Ukrain. Math. Zh.* 31(6), 627–634 (1979).
- [14] A. Ashyralyev, and P.E. Sobolevskii, Well-Posedness of Parabolic Difference Equations, Basel, Boston, Berlin: Birkhäuser Verlag, 1994.
- [15] http://www.fatih.edu.tr/~aserdogan/AA/cdp.m
- [16] S. Momani, Turk J Math 32, 51-60 (2008).
- [17] G. Adomian, Solving Frontier problems of Physics: The decomposition method, Kluwer Academic Publishers, 1994.