Using Inverse Laplace Transform for the solution of a Flood Routing Problem

H. Saboorkazeran¹ and M.F. Maghrebi^{1,2}

¹Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran ²Member of Iranian Structural Engineering Organization Province of Khorasan Razavi

Abstract

The inverse Laplace transform is of significant importance in mathematical sciences when an analytical solution exists in Laplace domain. So, a new solution of the linearized St. Venant equations (LSVE) has been obtained for flood routing in open channels. The LSVE has been previously used by many researchers [1] and in Laplace domain are in the matrix form

$$\frac{\partial \kappa}{\partial t} + A \frac{\partial \kappa}{\partial x} + B\kappa = 0 \tag{1}$$

where κ is transfer matrix includes deviations of discharge q(x,t) and depth y(x,t) around the reference values (Q_0, Y_0) . In this new formulation, the Manning formula is linearized as boundary condition besides the St. Venant equations to get a Laplace transformable, simplified set of equations in Laplace domain as follows

$$\hat{q}(L,s) = k_v \hat{y}(L,s) \tag{2}$$

where $k_v = \frac{\partial Q}{\partial Y}$. A method for Laplace inversion, which provides a great convergence, very accurate response for flood routing problem is used here. As previously this method has been used for diffusion waves model [2, 3], the results show the improved De Hoog algorithm [4] provide a solution with zero error for discharge, and very small percent of error for depth. Applying the well-known Preissmann implicit scheme on the LSVE for equal condition shows that the De Hoog algorithm is in complete agreement with the numerical solution of the LSVE.

References

[1] Litrico X. and Fromion V., Frequency modeling of open-channel flow, Journal of Hydraulic Engineering, 130, 806-815, 2004.

[2] Kazezyılmaz-Alhan C.M., An improved solution for diffusion waves to overland flow, Applied Mathematical Modelling (in press), 2011.

[3] Ahsan M., Numerical solution of the advection diffusion equation using Laplace transform finite analytical method, 3rd International Conference on Managing Rivers in the 21st Century: Sustainable Solutions for Global Crisis of Flooding, 204-215, 2011.

[4] De Hoog F.R., Knight J.H. and Stokes A.N., An improved method for numerical inversion of Laplace transforms, SIAM, Journal of scientific and statistical computing, 3, 357-366, 1982.