Multiple solutions for quasilinear equations depending on a parameter

Shapour Heidarkhani
${ }^{a}$ Department of Mathematics, Faculty of Sciences, Razi University, 67149 Kermanshah, Iran
e-mail addresses: s.heidarkhani@razi.ac.ir

Abstract

The purpose of this talk is to use a very recent three critical points theorem due to Bonanno and Marano [1] to establish the existence of at least three solutions for quasilinear second order differential equations on a compact interval $[a, b] \subset R$ under appropriate hypotheses. We exhibit the existence of at least three (weak) solutions and, and the results are illustrated by examples.

Keywords- Dirichlet problem; Critical point; Three solutions; Multiplicity results. AMS subject classification: 34B15; $47 J 10$.

1 Main results

Consider the following quasilinear two-point boundary value problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=(\lambda f(x, u)+g(u)) h\left(u^{\prime}\right) \quad \text { in }(a, b), \tag{1}\\
u(a)=u(b)=0
\end{array}\right.
$$

where $[a, b] \subset R$ is a compact interval, $f:[a, b] \times R \rightarrow R$ is an L^{1}-Caratéodory function, $g: R \rightarrow R$ is a Lipschitz continuous function with $g(0)=0$, i.e., there exists a constant $L \geq 0$ provided

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for all $\left.t_{1}, t_{2} \in R, h: R \rightarrow\right] 0,+\infty[$ is a bounded and continuous function with $m:=\inf h>0$ and λ is a positive parameter.

Employing Theorem 3.6 of [1], we establish the existence of at least three distinct (weak) solutions in $W_{0}^{1,2}([a, b])$ to the problem (1) for any fixed positive parameter λ belonging to an exact interval which will be observed in the main results.

We mean by a (weak) solution of problem (1), any $u \in W_{0}^{1,2}([a, b])$ such that

$$
\int_{a}^{b} u^{\prime}(x) v^{\prime}(x) d x-\int_{a}^{b}[\lambda f(x, u(x))+g(u(x))] h\left(u^{\prime}(x)\right) v(x) d x=0
$$

for every $v \in W_{0}^{1,2}([a, b])$. Denote $M:=\sup h$ and suppose that the constant $L \geq 0$ satisfies $L M(b-a)^{2}<4$.

We introduce the functions $F:[a, b] \times R \rightarrow R, H: R \rightarrow R$ and $G: R \rightarrow R$ respectively, as follows

$$
\begin{gathered}
F(x, t)=\int_{0}^{t} f(x, \xi) d \xi \text { for all }(x, t) \in[a, b] \times R \\
H(t)=\int_{0}^{t} \int_{0}^{\tau} \frac{1}{h(\delta)} d \delta d \tau \text { for all } t \in R
\end{gathered}
$$

and

$$
G(t)=-\int_{0}^{t} g(\xi) d \xi \text { for all } t \in R
$$

We now formulate our main result.
Theorem 1. Assume that there exist a positive constant r and a function $w \in W_{0}^{1,2}([a, b])$ such that
$\left(\alpha_{1}\right) \int_{a}^{b}\left[G(w(x))+H\left(w^{\prime}(x)\right)\right] d x>r$,
$\left(\alpha_{2}\right) \frac{\int_{a}^{b}{ }^{b}{ }_{t \in\left[-\sqrt{\frac{2 M(b-a) r}{4-L M(b-a)^{2}}}, \sqrt{\frac{2 M(b-a) r}{4-L M(b-a)^{2}}}{ }^{F} F(x, t) d x\right.}^{r}<\frac{\int_{a}^{b} F(x, w(x)) d x}{\int_{a}^{b}\left[G(w(x))+H\left(w^{\prime}(x)\right)\right] d x}, ~}{r}$
$\left(\alpha_{3}\right) \lim \sup _{|t| \rightarrow+\infty} \frac{F(x, t)}{t^{2}}<\frac{4-L M(b-a)^{2}}{2 M(b-a)^{2} r} \int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{2 M(b-a) r}{4-L M(b-a)^{2}}}, \sqrt{\left.\frac{2 M(b-a) r}{4-L M(b-a)^{2}}\right]}\right.} F(x, t) d x$ uniformly respect to $x \in[a, b]$.

Then, for each

$$
\left.\lambda \in \Lambda_{1}:=\right] \frac{\int_{a}^{b}\left[G(w(x))+H\left(w^{\prime}(x)\right)\right] d x}{\int_{a}^{b} F(x, w(x)) d x}, \frac{r}{\int_{a}^{b} \sup _{t \in\left[-\sqrt{\frac{2 M(b-a) r}{4-L M(b-a)^{2}}}, \sqrt{\left.\frac{2 M(b-a) r}{4-L M(b-a)^{2}}\right]}\right.} F(x, t) d x}[
$$

the problem (1) admits at least three distinct weak solutions in $W_{0}^{1,2}([a, b])$.

References

[1]G. Bonanno, S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010) 1-10.

