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Abstract. The sequence space `(p) was introduced by Maddox [Spaces of strongly summable sequences, Quart. J. Math.
Oxford (2)18(1967), 345–355]. In the present paper, the sequence space `(B̃, p) of non-absolute type, the domain of the
double sequential band matrix B(r̃, s̃) in the sequence space `(p), is introduced. Furthermore, the α-, β - and γ-duals of the
space `(B̃, p) are determined, and the Schauder basis is given. The classes of matrix transformations from the space `(B̃, p)
to the spaces `∞, f and c are characterized. Additionally, the characterizations of some other matrix transformations from the
space `(B̃, p) to the Euler, Riesz, difference, etc., sequence spaces are obtained by means of a given lemma. Finally, some
properties of the space `(B̃, p) are examined.
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PRELIMINARIES, BACKGROUND AND NOTATION

By w, we denote the space of all real valued sequences. Any vector subspace of w is called a sequence space. We write
`∞, c and c0 for the spaces of all bounded, convergent and null sequences, respectively. Also by bs, cs, `1 and `p; we
denote the spaces of all bounded, convergent, absolutely convergent and p-absolutely convergent series, respectively;
where 1 < p < ∞.

A linear topological space X over the real field R is said to be a paranormed space if there is a subadditive function
g : X→R such that g(θ)= 0,g(x)= g(−x) and scalar multiplication is continuous, i.e., |αn−α|→ 0 and g(xn−x)→ 0
imply g(αnxn−αx)→ 0 for all α’s in R and all x’s in X , where θ is the zero vector in the linear space X .

Assume here and after that (pk) be a bounded sequence of strictly positive real numbers with sup pk = H and
M = max{1,H}. Then, the linear spaces `(p) was defined by Maddox [21] (see also Simons [25] and Nakano
[24]) as `(p) = {x = (xk) ∈ w : ∑k |xk|pk < ∞} , (0 < pk ≤ H < ∞) which is the complete space paranormed by
g(x) = (∑k |xk|pk)1/M . For simplicity in notation, here and in what follows, the summation without limits runs from
0 to ∞. We assume throughout that p−1

k +(p′k)
−1 = 1 provided inf pk ≤ H < ∞ and denote the collection of all finite

subsets of N= {0,1,2, . . .} by F .
Let λ , µ be any two sequence spaces and A = (ank) be an infinite matrix of complex numbers ank, where n,k ∈ N.

Then, we say that A defines a matrix mapping from λ into µ , and we denote it by writing A : λ → µ , if for every
sequence x = (xk) ∈ λ the sequence Ax = {(Ax)n}, the A-transform of x, is in µ; where

(Ax)n = ∑
k

ankxk for all n ∈ N. (1)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ . Thus, A ∈ (λ : µ) if and only if the series on
the right side of (1) converges for each n ∈ N and every x ∈ λ , and we have Ax = {(Ax)n}n∈N ∈ µ for all x ∈ λ . A
sequence x is said to be A-summable to α if Ax converges to α which is called as the A-limit of x.

The main purpose of this paper, which is a continuation of Kirişçi and Başar [18], is to introduce the sequence
space `(B̃, p) of non-absolute type consisting of all sequences whose B(r̃, s̃)-transforms are in the space `(p); where

the double sequential band matrix B(r̃, s̃) = {bnk (rk,sk)} is defined by bnk (rk,sk) =

 rk , k = n,
sk , k = n−1,
0 , otherwise

for all



k,n ∈ N; where r̃ = (rk) and s̃ = (sk) are the convergent sequences whose entries either constants or distinct real
numbers. Furthermore, the basis is constructed and the α-, β - and γ-duals are computed for the space `(B̃, p). Besides
this, the matrix transformations from the space `(B̃, p) to some sequence spaces are characterized. Finally, some results
related to the rotundity of the space `(B̃, p) are derived.

It is clear that ∆(1) can be obtained as a special case of B(r̃, s̃) for r̃ = e and s̃ =−e and it is also trivial that B(r̃, s̃) is
reduced in the special case r̃ = re and s̃ =−se to the generalized difference matrix B(r,s). So, the results related to the
matrix domain of the matrix B(r̃, s̃) are more general and more comprehensive than the corresponding consequences
of the matrix domains of ∆(1) and B(r,s).

THE SEQUENCE SPACE `(B̃, p) OF NON-ABSOLUTE TYPE

In this section, we introduce the complete paranormed linear space `(B̃, p).
The matrix domain λA of an infinite matrix A in a sequence space λ is defined by λA =

{
x = (xk) ∈ w : Ax ∈ λ

}
.

Choudhary and Mishra [13] defined the sequence space `(p) which consists of all sequences such that S-transforms
of them are in the space `(p), where S = (snk) is defined by snk = 1, if 0 ≤ k ≤ n and snk = 0, otherwise. Başar
and Altay [10] have recently examined the space bs(p) which is formerly defined by Başar in [9] as the set of all
series whose sequences of partial sums are in `∞(p). More recently, Aydın and Başar [8] have studied the space
ar(u, p) which is the domain of the matrix Ar in the sequence space `(p), where the matrix Ar = {ank(r)} is defined
by ank(r) = (1+ rk)uk/(n+ 1), if 0 ≤ k ≤ n and ank(r) = 0, otherwise; where (uk) ∈ w with uk 6= 0 for all k ∈ N
and 0 < r < 1. Altay and Başar [2] have studied the sequence space rt(p) which is derived from the sequence space
`(p) of Maddox by the Riesz means Rt . Following Choudhary and Mishra [13], Başar and Altay [10], Altay and
Başar [2, 4, 5, 6], Aydın and Başar [7, 8], we introduce the sequence space `(B̃, p) as the set of all sequences whose
B(r̃, s̃)-transforms are in the space `(p), that is

`(B̃, p) :=

{
(xk) ∈ w : ∑

k
|sk−1xk−1 + rkxk|pk < ∞

}
, (0 < pk ≤ H < ∞).

It is trivial that in the case pk = p for all k ∈ N, the sequence space `(B̃, p) is reduced to the sequence space ˜̀p which
is introduced by Kirişçi and Başar [18]. Define the sequence y = (yk) as the B(r̃, s̃)-transform of a sequence x = (xk),
i.e.,

yk = (B̃x)k = rkxk + sk−1xk−1 for all k ∈ N. (2)

Since the spaces `(p) and `(B̃, p) are linearly isomorphic one can easily observe that x = (xk) ∈ `(B̃, p) if and only if
y = (yk) ∈ `(p), where the sequences x = (xk) and y = (yk) are connected with the relation (2).

Now, we may begin with the following theorem without proof which is essential in the text:

Theorem 1 `(B̃, p) is a complete linear metric space paranormed by the paranorm h(x)= (∑k |sk−1xk−1 + rkxk|pk)1/M ,
where M = max{1,sup pk} and 0 < pk ≤ H < ∞ for all k ∈ N.

Therefore, one can easily check that the absolute property does not hold on the space `(B̃, p), that is h(x) 6= h(|x|);
where |x|= (|xk|). This says that `(B̃, p) is the sequence space of non-absolute type.

Theorem 2 Convergence in `(B̃, p) is strictly stronger than coordinatewise convergence, but the converse is not true.

A sequence space λ with a linear topology is called a K-space provided each of the maps pi : λ → C defined by
pi(x) = xi is continuous for all i ∈N; where C denotes the complex field. A K-space λ is called an FK-space provided
λ is complete linear metric space. An FK-space whose topology is normable is called a BK-space. Now, we may give
the following:

Theorem 3 ˜̀p is the linear space under the coordinatewise addition and scalar multiplication which is the BK-space
with the norm ‖x‖ := (∑k |sk−1xk−1 + rkxk|p)1/p, where 1≤ p < ∞.



With the notation of (2), define the transformation T from `(B̃, p) to `(p) by x 7→ y= T x. Since T is a linear bijection,
we have

Corollary 4 The sequence space `(B̃, p) of non-absolute type is linearly isomorphic to the space `(p), where 0 <
pk ≤ H < ∞ for all k ∈ N.

Theorem 5 The space `(B̃, p) has AK.

Since, it is known that the matrix domain λA of a sequence space λ has a basis if and only if λ has a basis whenever
A = (ank) is a triangle (cf. [16, Remark 2.4]), we have:

Corollary 6 Let 0 < pk ≤ H < ∞ and αk = {B(r̃, s̃)x}k for all k ∈ N. Define the sequence b(k)(r,s) =
{

b(k)n (r,s)
}

n∈N

of the elements of the space `(B̃, p) by b(k)n :=

 (−1)n−k

rn

n−1
∏
j=k

s j
r j

, 0≤ k ≤ n,

0 , k > n,
for every fixed k ∈ N. Then, the

sequence {b(k)(r,s)}k∈N is a basis for the space `(B̃, p) and any x ∈ `(B̃, p) has a unique representation of the form
x := ∑k αkb(k).

THE α-, β - AND γ-DUALS OF THE SPACE `(B̃, p)

In this section, we give the theorems determining the α-, β - and γ-duals of the sequence space `(B̃, p) of non-absolute
type.

The set S(λ ,µ) defined by

S(λ ,µ) :=
{

z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x = (xk) ∈ λ
}

(3)

is called the multiplier space of the sequence spaces λ and µ . With the notation of (3), the α-, β - and γ-duals of a
sequence space λ , which are respectively denoted by λ α , λ β and λ γ , are defined by

λ
α := S(λ , `1), λ

β := S(λ ,cs) and λ
γ := S(λ ,bs).

Theorem 7 Define the sets S1(p) and S2(p) by

S1(p) =
⋃

B>1

a = (ak) ∈ w : sup
N∈F

∑
k

∣∣∣∣∣∑n∈N

(−1)n−k

rn

n−1

∏
j=k

s j

r j
anB−1

∣∣∣∣∣
p
′
k

< ∞

 ,

S2(p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣∑n∈N

(−1)n−k

rn

n−1

∏
j=k

s j

r j
an

∣∣∣∣∣
pk

< ∞

}
.

Then, {`(B̃, p)}α =

{
S1(p) , 1 < pk ≤ H < ∞ for all k ∈ N,
S2(p) , 0 < pk ≤ 1 for all k ∈ N.

Theorem 8 Define the sets S3(p), S4(p) and S5(p) by

S3(p) =
⋃

B>1

a = (ak) ∈ w : sup
n

∑
k

∣∣∣∣∣n−k

∑
i=0

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
ai+kB−1

∣∣∣∣∣
p′k

< ∞

 ,

S4(p) =

{
a = (ak) ∈ w :

∞

∑
i=0

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
ai+k < ∞

}
,

S5(p) =

{
a = (ak) ∈ w : sup

n,k∈N

∣∣∣∣∣n−k

∑
i=0

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
ai+k

∣∣∣∣∣
pk

< ∞

}
.

Then, {`(B̃, p)}β =

{
S3(p)∩S4(p) , 1 < pk ≤ H < ∞ for all k ∈ N,
S4(p)∩S5(p) , 0 < pk ≤ 1 for all k ∈ N.



Theorem 9 {`(B̃, p)}γ =

{
S3(p) , 1 < pk ≤ H < ∞ for all k ∈ N,
S5(p) , 0 < pk ≤ 1 for all k ∈ N.

MATRIX TRANSFORMATIONS ON THE SEQUENCE SPACE `(B̃, p)

In this section, we characterize the classes (`(B̃, p) : `∞), (`(B̃, p) : f ) and (`(B̃, p) : c) of matrix transformations. We
consider only the case 1 < pk ≤ H < ∞ and leave the case 0 < pk ≤ 1 to the reader because of it can be proved in the
similar way.

We write for brevity that ãnk = ∑
∞
j=k

1
r

(−s
r

) j−k an j for all k,n ∈ N.

Theorem 10 Let A = (ank) be an infinite matrix. Then, the following statements hold:

(i) Let 1 < pk ≤ H < ∞ for all k ∈ N. Then, A ∈ (`(B̃, p) : `∞) if and only if and there exists an integer M > 1 such
that

sup
n∈N

∑
k

∣∣∣∣∣n−k

∑
i=0

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
an,i+kB−1

∣∣∣∣∣
p
′
k

< ∞, (4)

∑
i

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
an,i+k < ∞. (5)

(ii) Let 0 < pk ≤ 1 for all k ∈ N. Then, A ∈ (`(B̃, p) : `∞) if and only if the condition (5) holds

sup
n,k∈N

∣∣∣∣∣n−k

∑
i=0

(−1)i

ri+k

i+k−1

∏
j=k

s j

r j
an,i+k

∣∣∣∣∣
pk

< ∞. (6)

Theorem 11 Let the entries of the matrices E = (enk) and F = ( fnk) are connected with the relation

enk := sk−1 fn,k−1 + rk fnk or fnk :=
∞

∑
i=k

(−1)i

ri

i−1

∏
j=k

s j

r j
eni (7)

for all k,n ∈ N. Then, E ∈ (`(B̃, p) : f ) if and only if F ∈ (`(p) : f ) and Fn ∈ (`(p) : c) for every fixed n ∈ N, where

Fn =
(

f (n)mk

)
with f (n)mk :=


m
∑

i=k

(−1)i

ri

i−1
∏
j=k

s j
r j

eni , 0≤ k ≤ m,

0 , k > m,

for all m,k ∈ N.

Theorem 12 Let 0 < pk ≤H < ∞ for all k ∈N. Then, A ∈ (`(B̃, p) : c) if and only if (4)-(6) hold and limn→∞ ãnk = αk
for every fixed k ∈ N.

SOME PROPERTIES OF THE SPACE `(B̃, p)

Among many geometric properties, the rotundity of Banach spaces is one of the most important topics in functional
analysis. For details, the reader may refer to [12], [14] and [23]. In this section, we characterize the rotundity of the
space `(B̃, p) and emphasize some results related to this concept.

By S(X) and B(X), we denote the unit sphere and unit ball of a Banach space X , respectively. A point x ∈ S(X) is
called an extreme point if 2x = y+ z implies y = z for all y,z ∈ S(X).

A Banach space X is said to be rotund (strictly convex) if every point of S(X) is an extreme point.

Theorem 13 The modular σp on `(B̃, p) satisfies the following properties with pk ≥ 1 for all k ∈ N

(i) If 0 < α ≤ 1, then αMσp(
x
α
)≤ σp(x) and σp(αx)≤ ασp(x).

(ii) If α ≥ 1, then σp(x)≤ αMσp(
x
α
).



(iii) If α ≥ 1, then σp(x)≤ ασp(
x
α
).

Theorem 14 For any x ∈ `(B̃, p), we have

(i) If ‖x‖< 1, then σp(x)≤ ‖x‖,
(ii) If ‖x‖> 1, then σp(x)≥ ‖x‖,

(iii) ‖x‖= 1 if and only if σp(x) = 1,
(iv) ‖x‖< 1 if and only if σp(x)< 1,
(v) ‖x‖> 1 if and only if σp(x)> 1.

Theorem 15 `(B̃, p) is a Banach space with Luxemburg norm.
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