Some Topological and Geometric Properties of the Domain of the Double Sequential Band Matrix $B(\widetilde{r}, \widetilde{s})$ in the Sequence Space $\ell(p)$

Havva Nergiz and Feyzi Başar
Department of Mathematics, Faculty of Arts and Sciences, Fatih University, The Hadımköy Campus, Büyükçekmece, 34500-İstanbul, Turkey

Abstract

The sequence space $\ell(p)$ was introduced by Maddox [Spaces of strongly summable sequences, Quart. J. Math. Oxford (2)18(1967), 345-355]. In the present paper, the sequence space $\ell(\widetilde{B}, p)$ of non-absolute type, the domain of the double sequential band matrix $B(\widetilde{r}, \widetilde{s})$ in the sequence space $\ell(p)$, is introduced. Furthermore, the α-, β - and γ-duals of the space $\ell(\widetilde{B}, p)$ are determined, and the Schauder basis is given. The classes of matrix transformations from the space $\ell(\widetilde{B}, p)$ to the spaces ℓ_{∞}, f and c are characterized. Additionally, the characterizations of some other matrix transformations from the space $\ell(\widetilde{B}, p)$ to the Euler, Riesz, difference, etc., sequence spaces are obtained by means of a given lemma. Finally, some properties of the space $\ell(\widetilde{\boldsymbol{B}}, p)$ are examined.

Keywords: Paranormed sequence space, double sequential band matrix, α-, β - and γ-duals, matrix transformations and rotundity of a sequence space.
PACS: $02.30 . \mathrm{Sa}, 02.30 . \mathrm{Tb}$

PRELIMINARIES, BACKGROUND AND NOTATION

By w, we denote the space of all real valued sequences. Any vector subspace of w is called a sequence space. We write ℓ_{∞}, c and c_{0} for the spaces of all bounded, convergent and null sequences, respectively. Also by $b s, c s, \ell_{1}$ and ℓ_{p}; we denote the spaces of all bounded, convergent, absolutely convergent and p-absolutely convergent series, respectively; where $1<p<\infty$.

A linear topological space X over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \rightarrow \mathbb{R}$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all α 's in \mathbb{R} and all x 's in X, where θ is the zero vector in the linear space X.
Assume here and after that $\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers with sup $p_{k}=H$ and $M=\max \{1, H\}$. Then, the linear spaces $\ell(p)$ was defined by Maddox [21] (see also Simons [25] and Nakano [24]) as $\ell(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\},\left(0<p_{k} \leq H<\infty\right)$ which is the complete space paranormed by $g(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{1 / M}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞. We assume throughout that $p_{k}^{-1}+\left(p_{k}^{\prime}\right)^{-1}=1$ provided inf $p_{k} \leq H<\infty$ and denote the collection of all finite subsets of $\mathbb{N}=\{0,1,2, \ldots\}$ by \mathscr{F}.
Let λ, μ be any two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ, and we denote it by writing $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$ the sequence $A x=\left\{(A x)_{n}\right\}$, the A-transform of x, is in μ; where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \text { for all } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

By $(\lambda: \mu)$, we denote the class of all matrices A such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right side of (1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence x is said to be A-summable to α if $A x$ converges to α which is called as the A-limit of x.
The main purpose of this paper, which is a continuation of Kirişçi and Başar [18], is to introduce the sequence space $\ell(\widetilde{B}, p)$ of non-absolute type consisting of all sequences whose $B(\widetilde{r}, \widetilde{s})$-transforms are in the space $\ell(p)$; where the double sequential band matrix $B(\widetilde{r}, \widetilde{s})=\left\{b_{n k}\left(r_{k}, s_{k}\right)\right\}$ is defined by $b_{n k}\left(r_{k}, s_{k}\right)=\left\{\begin{array}{cl}r_{k} & , \quad k=n, \\ s_{k} & , \quad k=n-1, \\ 0 & , \\ \text { otherwise }\end{array}\right.$ for all
$k, n \in \mathbb{N}$; where $\widetilde{r}=\left(r_{k}\right)$ and $\widetilde{s}=\left(s_{k}\right)$ are the convergent sequences whose entries either constants or distinct real numbers. Furthermore, the basis is constructed and the $\alpha-, \beta$ - and γ-duals are computed for the space $\ell(\widetilde{B}, p)$. Besides this, the matrix transformations from the space $\ell(\widetilde{B}, p)$ to some sequence spaces are characterized. Finally, some results related to the rotundity of the space $\ell(\widetilde{B}, p)$ are derived.

It is clear that $\Delta^{(1)}$ can be obtained as a special case of $B(\widetilde{r}, \widetilde{s})$ for $\widetilde{r}=e$ and $\widetilde{s}=-e$ and it is also trivial that $B(\widetilde{r}, \widetilde{s})$ is reduced in the special case $\widetilde{r}=r e$ and $\widetilde{s}=-s e$ to the generalized difference matrix $B(r, s)$. So, the results related to the matrix domain of the matrix $B(\widetilde{r}, \widetilde{s})$ are more general and more comprehensive than the corresponding consequences of the matrix domains of $\Delta^{(1)}$ and $B(r, s)$.

THE SEQUENCE SPACE $\ell(\widetilde{B}, p)$ OF NON-ABSOLUTE TYPE

In this section, we introduce the complete paranormed linear space $\ell(\widetilde{B}, p)$.
The matrix domain λ_{A} of an infinite matrix A in a sequence space λ is defined by $\lambda_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in \lambda\right\}$. Choudhary and Mishra [13] defined the sequence space $\overline{\ell(p)}$ which consists of all sequences such that S-transforms of them are in the space $\ell(p)$, where $S=\left(s_{n k}\right)$ is defined by $s_{n k}=1$, if $0 \leq k \leq n$ and $s_{n k}=0$, otherwise. Başar and Altay [10] have recently examined the space $b s(p)$ which is formerly defined by Başar in [9] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$. More recently, Aydın and Başar [8] have studied the space $a^{r}(u, p)$ which is the domain of the matrix A^{r} in the sequence space $\ell(p)$, where the matrix $A^{r}=\left\{a_{n k}(r)\right\}$ is defined by $a_{n k}(r)=\left(1+r^{k}\right) u_{k} /(n+1)$, if $0 \leq k \leq n$ and $a_{n k}(r)=0$, otherwise; where $\left(u_{k}\right) \in w$ with $u_{k} \neq 0$ for all $k \in \mathbb{N}$ and $0<r<1$. Altay and Başar [2] have studied the sequence space $r^{t}(p)$ which is derived from the sequence space $\ell(p)$ of Maddox by the Riesz means R^{t}. Following Choudhary and Mishra [13], Başar and Altay [10], Altay and Başar [2, 4, 5, 6], Aydın and Başar [7, 8], we introduce the sequence space $\ell(\widetilde{\boldsymbol{B}}, p)$ as the set of all sequences whose $B(\widetilde{r}, \widetilde{s})$-transforms are in the space $\ell(p)$, that is

$$
\ell(\widetilde{B}, p):=\left\{\left(x_{k}\right) \in w: \sum_{k}\left|s_{k-1} x_{k-1}+r_{k} x_{k}\right|^{p_{k}}<\infty\right\}, \quad\left(0<p_{k} \leq H<\infty\right) .
$$

It is trivial that in the case $p_{k}=p$ for all $k \in \mathbb{N}$, the sequence space $\ell(\widetilde{\boldsymbol{B}}, p)$ is reduced to the sequence space $\widetilde{\ell}_{p}$ which is introduced by Kirişçi and Başar [18]. Define the sequence $y=\left(y_{k}\right)$ as the $B(\widetilde{r}, \widetilde{s})$-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}=(\widetilde{B} x)_{k}=r_{k} x_{k}+s_{k-1} x_{k-1} \text { for all } k \in \mathbb{N} . \tag{2}
\end{equation*}
$$

Since the spaces $\ell(p)$ and $\ell(\widetilde{B}, p)$ are linearly isomorphic one can easily observe that $x=\left(x_{k}\right) \in \ell(\widetilde{B}, p)$ if and only if $y=\left(y_{k}\right) \in \ell(p)$, where the sequences $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$ are connected with the relation (2).

Now, we may begin with the following theorem without proof which is essential in the text:
Theorem $1 \ell(\widetilde{B}, p)$ is a complete linear metric space paranormed by the paranorm $h(x)=\left(\sum_{k}\left|s_{k-1} x_{k-1}+r_{k} x_{k}\right|^{p_{k}}\right)^{1 / M}$, where $M=\max \left\{1, \sup p_{k}\right\}$ and $0<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$.

Therefore, one can easily check that the absolute property does not hold on the space $\ell(\widetilde{B}, p)$, that is $h(x) \neq h(|x|)$; where $|x|=\left(\left|x_{k}\right|\right)$. This says that $\ell(\widetilde{B}, p)$ is the sequence space of non-absolute type.

Theorem 2 Convergence in $\ell(\widetilde{B}, p)$ is strictly stronger than coordinatewise convergence, but the converse is not true.
A sequence space λ with a linear topology is called a K-space provided each of the maps $p_{i}: \lambda \rightarrow \mathbb{C}$ defined by $p_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the complex field. A K-space λ is called an $F K$-space provided λ is complete linear metric space. An $F K$-space whose topology is normable is called a $B K$-space. Now, we may give the following:

Theorem $3 \widetilde{\ell}_{p}$ is the linear space under the coordinatewise addition and scalar multiplication which is the BK-space with the norm $\|x\|:=\left(\sum_{k}\left|s_{k-1} x_{k-1}+r_{k} x_{k}\right|^{p}\right)^{1 / p}$, where $1 \leq p<\infty$.

With the notation of (2), define the transformation T from $\ell(\widetilde{B}, p)$ to $\ell(p)$ by $x \mapsto y=T x$. Since T is a linear bijection, we have
Corollary 4 The sequence space $\ell(\widetilde{B}, p)$ of non-absolute type is linearly isomorphic to the space $\ell(p)$, where $0<$ $p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$.

Theorem 5 The space $\ell(\widetilde{B}, p)$ has $A K$.
Since, it is known that the matrix domain λ_{A} of a sequence space λ has a basis if and only if λ has a basis whenever $A=\left(a_{n k}\right)$ is a triangle (cf. [16, Remark 2.4]), we have:
Corollary 6 Let $0<p_{k} \leq H<\infty$ and $\alpha_{k}=\{B(\widetilde{r}, \widetilde{s}) x\}_{k}$ for all $k \in \mathbb{N}$. Define the sequence $b^{(k)}(r, s)=\left\{b_{n}^{(k)}(r, s)\right\}_{n \in \mathbb{N}}$ of the elements of the space $\ell(\widetilde{B}, p)$ by $b_{n}^{(k)}:=\left\{\begin{array}{ccc}\frac{(-1)^{n-k}}{r_{n}} \prod_{j=k}^{n-1} \frac{s_{j}}{r_{j}}, & 0 \leq k \leq n, \\ 0 & k>n,\end{array} \quad\right.$ for every fixed $k \in \mathbb{N}$. Then, the sequence $\left\{b^{(k)}(r, s)\right\}_{k \in \mathbb{N}}$ is a basis for the space $\ell(\widetilde{B}, p)$ and any $x \in \ell(\widetilde{B}, p)$ has a unique representation of the form $x:=\sum_{k} \alpha_{k} b^{(k)}$.

THE α-, β - AND γ-DUALS OF THE SPACE $\ell(\widetilde{B}, p)$

In this section, we give the theorems determining the α-, β - and γ-duals of the sequence space $\ell(\widetilde{B}, p)$ of non-absolute type.

The set $S(\lambda, \mu)$ defined by

$$
\begin{equation*}
S(\lambda, \mu):=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x=\left(x_{k}\right) \in \lambda\right\} \tag{3}
\end{equation*}
$$

is called the multiplier space of the sequence spaces λ and μ. With the notation of (3), the α-, β - and γ-duals of a sequence space λ, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and λ^{γ}, are defined by

$$
\lambda^{\alpha}:=S\left(\lambda, \ell_{1}\right), \quad \lambda^{\beta}:=S(\lambda, c s) \quad \text { and } \quad \lambda^{\gamma}:=S(\lambda, b s)
$$

Theorem 7 Define the sets $S_{1}(p)$ and $S_{2}(p)$ by

$$
\begin{aligned}
& S_{1}(p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in F} \sum_{k}\left|\sum_{n \in N} \frac{(-1)^{n-k}}{r_{n}} \prod_{j=k}^{n-1} \frac{s_{j}}{r_{j}} a_{n} B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}, \\
& S_{2}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{N \in F} \sup _{k \in \mathbb{N}}\left|\sum_{n \in N} \frac{(-1)^{n-k}}{r_{n}} \prod_{j=k}^{n-1} \frac{s_{j}}{r_{j}} a_{n}\right|^{p_{k}}<\infty\right\} .
\end{aligned}
$$

Then, $\{\ell(\widetilde{\boldsymbol{B}}, p)\}^{\alpha}= \begin{cases}S_{1}(p) & , \quad 1<p_{k} \leq H<\infty \text { for all } k \in \mathbb{N} \text {, } \\ S_{2}(p), & 0<p_{k} \leq 1 \text { for all } k \in \mathbb{N} .\end{cases}$
Theorem 8 Define the sets $S_{3}(p), S_{4}(p)$ and $S_{5}(p)$ by

$$
\begin{aligned}
& S_{3}(p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in w:\left.\sup _{n} \sum_{k} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k} B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}, \\
& S_{4}(p)=\left\{a=\left(a_{k}\right) \in w: \sum_{i=0}^{\infty} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k}<\infty\right\}, \\
& S_{5}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{n, k \in \mathbb{N}}\left|\sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k}\right|^{p_{k}}<\infty\right\} .
\end{aligned}
$$

Then, $\{\ell(\widetilde{\boldsymbol{B}}, p)\}^{\beta}= \begin{cases}S_{3}(p) \cap S_{4}(p) & , \quad 1<p_{k} \leq H<\infty \text { for all } k \in \mathbb{N}, \\ S_{4}(p) \cap S_{5}(p) & , \\ 0<p_{k} \leq 1 \text { for all } k \in \mathbb{N} .\end{cases}$

Theorem $9\{\ell(\widetilde{\boldsymbol{B}}, p)\}^{\gamma}=\left\{\begin{array}{lll}S_{3}(p) & , & 1<p_{k} \leq H<\infty \text { for all } k \in \mathbb{N}, \\ S_{5}(p) & , & 0<p_{k} \leq 1 \text { for all } k \in \mathbb{N} .\end{array}\right.$

MATRIX TRANSFORMATIONS ON THE SEQUENCE SPACE $\ell(\widetilde{B}, p)$

In this section, we characterize the classes $\left(\ell(\widetilde{B}, p): \ell_{\infty}\right),(\ell(\widetilde{B}, p): f)$ and $(\ell(\widetilde{B}, p): c)$ of matrix transformations. We consider only the case $1<p_{k} \leq H<\infty$ and leave the case $0<p_{k} \leq 1$ to the reader because of it can be proved in the similar way.

We write for brevity that $\widetilde{a}_{n k}=\sum_{j=k}^{\infty} \frac{1}{r}\left(\frac{-s}{r}\right)^{j-k} a_{n j}$ for all $k, n \in \mathbb{N}$.
Theorem 10 Let $A=\left(a_{n k}\right)$ be an infinite matrix. Then, the following statements hold:
(i) Let $1<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$. Then, $A \in\left(\ell(\widetilde{B}, p): \ell_{\infty}\right)$ if and only if and there exists an integer $M>1$ such that

$$
\begin{align*}
& \sup _{n \in \mathbb{N}} \sum_{k}\left|\sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{n, i+k} B^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{4}\\
& \sum_{i} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{n, i+k}<\infty . \tag{5}
\end{align*}
$$

(ii) Let $0<p_{k} \leq 1$ for all $k \in \mathbb{N}$. Then, $A \in\left(\ell(\widetilde{B}, p): \ell_{\infty}\right)$ if and only if the condition (5) holds

$$
\begin{equation*}
\sup _{n, k \in \mathbb{N}}\left|\sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{n, i+k}\right|^{p_{k}}<\infty . \tag{6}
\end{equation*}
$$

Theorem 11 Let the entries of the matrices $E=\left(e_{n k}\right)$ and $F=\left(f_{n k}\right)$ are connected with the relation

$$
\begin{equation*}
e_{n k}:=s_{k-1} f_{n, k-1}+r_{k} f_{n k} \text { or } f_{n k}:=\sum_{i=k}^{\infty} \frac{(-1)^{i}}{r_{i}} \prod_{j=k}^{i-1} \frac{s_{j}}{r_{j}} e_{n i} \tag{7}
\end{equation*}
$$

for all $k, n \in \mathbb{N}$. Then, $E \in(\ell(\widetilde{B}, p): f)$ if and only if $F \in(\ell(p): f)$ and $F^{n} \in(\ell(p): c)$ for every fixed $n \in \mathbb{N}$, where $F^{n}=\left(f_{m k}^{(n)}\right)$ with $f_{m k}^{(n)}:=\left\{\begin{array}{cll}\sum_{i=k}^{m} \frac{(-1)^{i}}{r_{i}} \prod_{j=k}^{i-1} \frac{s_{j}}{r_{j}} e_{n i} & , \quad 0 \leq k \leq m, & \text { for all } m, k \in \mathbb{N} . \\ 0 & , k>m,\end{array}\right.$

Theorem 12 Let $0<p_{k} \leq H<\infty$ for all $k \in \mathbb{N}$. Then, $A \in(\ell(\widetilde{B}, p): c)$ if and only if (4)-(6) hold and $\lim _{n \rightarrow \infty} \widetilde{a}_{n k}=\alpha_{k}$ for every fixed $k \in \mathbb{N}$.

SOME PROPERTIES OF THE SPACE $\ell(\widetilde{B}, p)$

Among many geometric properties, the rotundity of Banach spaces is one of the most important topics in functional analysis. For details, the reader may refer to [12], [14] and [23]. In this section, we characterize the rotundity of the space $\ell(\widetilde{B}, p)$ and emphasize some results related to this concept.

By $S(X)$ and $B(X)$, we denote the unit sphere and unit ball of a Banach space X, respectively. A point $x \in S(X)$ is called an extreme point if $2 x=y+z$ implies $y=z$ for all $y, z \in S(X)$.

A Banach space X is said to be rotund (strictly convex) if every point of $S(X)$ is an extreme point.
Theorem 13 The modular σ_{p} on $\ell(\widetilde{B}, p)$ satisfies the following properties with $p_{k} \geq 1$ for all $k \in \mathbb{N}$
(i) If $0<\alpha \leq 1$, then $\alpha^{M} \sigma_{p}\left(\frac{x}{\alpha}\right) \leq \sigma_{p}(x)$ and $\sigma_{p}(\alpha x) \leq \alpha \sigma_{p}(x)$.
(ii) If $\alpha \geq 1$, then $\sigma_{p}(x) \leq \alpha^{M} \sigma_{p}\left(\frac{x}{\alpha}\right)$.
(iii) If $\alpha \geq 1$, then $\sigma_{p}(x) \leq \alpha \sigma_{p}\left(\frac{x}{\alpha}\right)$.

Theorem 14 For any $x \in \ell(\widetilde{B}, p)$, we have
(i) If $\|x\|<1$, then $\sigma_{p}(x) \leq\|x\|$,
(ii) If $\|x\|>1$, then $\sigma_{p}(x) \geq\|x\|$,
(iii) $\|x\|=1$ if and only if $\sigma_{p}(x)=1$,
(iv) $\|x\|<1$ if and only if $\sigma_{p}(x)<1$,
(v) $\|x\|>1$ if and only if $\sigma_{p}(x)>1$.

Theorem $15 \ell(\widetilde{B}, p)$ is a Banach space with Luxemburg norm.

REFERENCES

1. Z.U. Ahmad, Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42(1987), 57-61.
2. B. Altay, F. Başar, On the Paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(5)(2002), 701-715.
3. B. Altay, F. Başar, Some paranormed Riezs sequence spaces of non-absolute type, Southeast Asian Bull. Math. 30(5)(2006), 591-608.
4. B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319(2)(2006), 494-508.
5. B. Altay, F. Başar, Generalisation of the sequence space $\ell(p)$ derived by weighted mean, J. Math. Anal. Appl. 330(1)(2007), 174-185.
6. B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. 336(1)(2007), 632-645.
7. C. Aydın, F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160(1-4)(2004), 27-40.
8. C. Aydın, F. Başar, Some generalisations of the sequence space a_{p}^{r}, Iran. J. Sci. Technol. Trans. A, Sci. 30(2006), No. A2, 175-190.
9. F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital. (7)6(3)(1992), 395-402.
10. F. Başar, B. Altay, Matrix mappings on the space $b s(p)$ and its α-, β - and γ-duals, Aligarh Bull. Math. 21(1)(2002), 79-91.
11. F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bvp of p-bounded variation sequences, Nonlinear Anal. 68(2)(2008), 273-287.
12. S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356(1996), 1-224.
13. B. Choudhary, S.K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math. 24(5)(1993), 291-301.
14. J. Diestel, Geometry of Banach spaces-Selected Topics, Springer-Verlag, 1984.
15. K. -G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180(1993), 223-238.
16. A. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52(1990), $177-191$.
17. H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2)(1981), 169-176.
18. M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. 60(5)(2010), 1299-1309.
19. C.G. Lascarides, I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68(1970), 99-104.
20. G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948) 167-190.
21. I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2)18(1967), 345-355.
22. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc. 64(1968), 335-340.
23. L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan, 1985.
24. H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27(2)(1951), 508-512.
25. S. Simons, The sequence spaces $\ell\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. (3), 15(1965), 422-436.
26. A. Wilansky, Summability through Functional Analysis, Nort-Holland Mathematics Studies, 85, Amsterdam-New YorkOxford, 1984.
