Some Topological and Geometric Properties of the Domain of the Double Sequential Band Matrix $B(\tilde{r}, \tilde{s})$ in the Sequence Space $\ell(p)$

Havva Nergiz and Feyzi Başar

Department of Mathematics, Faculty of Arts and Sciences, Fatih University, The Hadımköy Campus, Büyükçekmece, 34500–İstanbul, Turkey

Abstract. The sequence space $\ell(p)$ was introduced by Maddox [Spaces of strongly summable sequences, Quart. J. Math. Oxford (2)**18**(1967), 345–355]. In the present paper, the sequence space $\ell(\tilde{B}, p)$ of non-absolute type, the domain of the double sequential band matrix $B(\tilde{r}, \tilde{s})$ in the sequence space $\ell(p)$, is introduced. Furthermore, the α -, β - and γ -duals of the space $\ell(\tilde{B}, p)$ are determined, and the Schauder basis is given. The classes of matrix transformations from the space $\ell(\tilde{B}, p)$ to the space $\ell(\tilde{B}, p)$ to the Euler, Riesz, difference, etc., sequence spaces are obtained by means of a given lemma. Finally, some properties of the space $\ell(\tilde{B}, p)$ are examined.

Keywords: Paranormed sequence space, double sequential band matrix, α -, β - and γ -duals, matrix transformations and rotundity of a sequence space. **PACS:** 02.30.Sa, 02.30.Tb

PRELIMINARIES, BACKGROUND AND NOTATION

By *w*, we denote the space of all real valued sequences. Any vector subspace of *w* is called a *sequence space*. We write ℓ_{∞} , *c* and c_0 for the spaces of all bounded, convergent and null sequences, respectively. Also by *bs*, *cs*, ℓ_1 and ℓ_p ; we denote the spaces of all bounded, convergent, absolutely convergent and *p*-absolutely convergent series, respectively; where 1 .

A linear topological space *X* over the real field \mathbb{R} is said to be a paranormed space if there is a subadditive function $g: X \to \mathbb{R}$ such that $g(\theta) = 0, g(x) = g(-x)$ and scalar multiplication is continuous, i.e., $|\alpha_n - \alpha| \to 0$ and $g(x_n - x) \to 0$ imply $g(\alpha_n x_n - \alpha x) \to 0$ for all α 's in \mathbb{R} and all *x*'s in *X*, where θ is the zero vector in the linear space *X*.

Assume here and after that (p_k) be a bounded sequence of strictly positive real numbers with $\sup p_k = H$ and $M = \max\{1, H\}$. Then, the linear spaces $\ell(p)$ was defined by Maddox [21] (see also Simons [25] and Nakano [24]) as $\ell(p) = \{x = (x_k) \in w : \sum_k |x_k|^{p_k} < \infty\}$, $(0 < p_k \le H < \infty)$ which is the complete space paranormed by $g(x) = (\sum_k |x_k|^{p_k})^{1/M}$. For simplicity in notation, here and in what follows, the summation without limits runs from 0 to ∞ . We assume throughout that $p_k^{-1} + (p'_k)^{-1} = 1$ provided inf $p_k \le H < \infty$ and denote the collection of all finite subsets of $\mathbb{N} = \{0, 1, 2, ...\}$ by \mathscr{F} .

Let λ , μ be any two sequence spaces and $A = (a_{nk})$ be an infinite matrix of complex numbers a_{nk} , where $n, k \in \mathbb{N}$. Then, we say that A defines a matrix mapping from λ into μ , and we denote it by writing $A : \lambda \to \mu$, if for every sequence $x = (x_k) \in \lambda$ the sequence $Ax = \{(Ax)_n\}$, the A-transform of x, is in μ ; where

$$(Ax)_n = \sum_k a_{nk} x_k \text{ for all } n \in \mathbb{N}.$$
(1)

By $(\lambda : \mu)$, we denote the class of all matrices *A* such that $A : \lambda \to \mu$. Thus, $A \in (\lambda : \mu)$ if and only if the series on the right side of (1) converges for each $n \in \mathbb{N}$ and every $x \in \lambda$, and we have $Ax = \{(Ax)_n\}_{n \in \mathbb{N}} \in \mu$ for all $x \in \lambda$. A sequence *x* is said to be *A*-summable to α if *Ax* converges to α which is called as the *A*-limit of *x*.

The main purpose of this paper, which is a continuation of Kirişçi and Başar [18], is to introduce the sequence space $\ell(\tilde{B}, p)$ of non-absolute type consisting of all sequences whose $B(\tilde{r}, \tilde{s})$ -transforms are in the space $\ell(p)$; where

the double sequential band matrix $B(\tilde{r},\tilde{s}) = \{b_{nk}(r_k,s_k)\}$ is defined by $b_{nk}(r_k,s_k) = \begin{cases} r_k & , k = n, \\ s_k & , k = n-1, \\ 0 & , \text{ otherwise} \end{cases}$ for all

 $k, n \in \mathbb{N}$; where $\tilde{r} = (r_k)$ and $\tilde{s} = (s_k)$ are the convergent sequences whose entries either constants or distinct real numbers. Furthermore, the basis is constructed and the α -, β - and γ -duals are computed for the space $\ell(\tilde{B}, p)$. Besides this, the matrix transformations from the space $\ell(\tilde{B}, p)$ to some sequence spaces are characterized. Finally, some results related to the rotundity of the space $\ell(\tilde{B}, p)$ are derived.

It is clear that $\Delta^{(1)}$ can be obtained as a special case of $B(\tilde{r}, \tilde{s})$ for $\tilde{r} = e$ and $\tilde{s} = -e$ and it is also trivial that $B(\tilde{r}, \tilde{s})$ is reduced in the special case $\tilde{r} = re$ and $\tilde{s} = -se$ to the generalized difference matrix B(r, s). So, the results related to the matrix domain of the matrix $B(\tilde{r}, \tilde{s})$ are more general and more comprehensive than the corresponding consequences of the matrix domains of $\Delta^{(1)}$ and B(r, s).

THE SEQUENCE SPACE $\ell(\widetilde{B}, p)$ OF NON-ABSOLUTE TYPE

In this section, we introduce the complete paranormed linear space $\ell(B, p)$.

The matrix domain λ_A of an infinite matrix A in a sequence space λ is defined by $\lambda_A = \{x = (x_k) \in w : Ax \in \lambda\}$. Choudhary and Mishra [13] defined the sequence space $\overline{\ell(p)}$ which consists of all sequences such that S-transforms of them are in the space $\ell(p)$, where $S = (s_{nk})$ is defined by $s_{nk} = 1$, if $0 \le k \le n$ and $s_{nk} = 0$, otherwise. Başar and Altay [10] have recently examined the space bs(p) which is formerly defined by Başar in [9] as the set of all series whose sequences of partial sums are in $\ell_{\infty}(p)$. More recently, Aydın and Başar [8] have studied the space $a^r(u, p)$ which is the domain of the matrix A^r in the sequence space $\ell(p)$, where the matrix $A^r = \{a_{nk}(r)\}$ is defined by $a_{nk}(r) = (1 + r^k)u_k/(n+1)$, if $0 \le k \le n$ and $a_{nk}(r) = 0$, otherwise; where $(u_k) \in w$ with $u_k \ne 0$ for all $k \in \mathbb{N}$ and 0 < r < 1. Altay and Başar [2] have studied the sequence space $r^t(p)$ which is derived from the sequence space $\ell(p)$ of Maddox by the Riesz means R^t . Following Choudhary and Mishra [13], Başar and Altay [10], Altay and Başar [2, 4, 5, 6], Aydın and Başar [7, 8], we introduce the sequence space $\ell(\widetilde{B}, p)$ as the set of all sequences whose $B(\widetilde{r}, \widehat{s})$ -transforms are in the space $\ell(p)$, that is

$$\ell(\widetilde{B}, p) := \left\{ (x_k) \in w : \sum_k |s_{k-1}x_{k-1} + r_k x_k|^{p_k} < \infty \right\}, \ (0 < p_k \le H < \infty).$$

It is trivial that in the case $p_k = p$ for all $k \in \mathbb{N}$, the sequence space $\ell(\tilde{B}, p)$ is reduced to the sequence space $\tilde{\ell}_p$ which is introduced by Kirişçi and Başar [18]. Define the sequence $y = (y_k)$ as the $B(\tilde{r}, \tilde{s})$ -transform of a sequence $x = (x_k)$, i.e.,

$$y_k = (Bx)_k = r_k x_k + s_{k-1} x_{k-1} \quad \text{for all} \quad k \in \mathbb{N}.$$

Since the spaces $\ell(p)$ and $\ell(\tilde{B}, p)$ are linearly isomorphic one can easily observe that $x = (x_k) \in \ell(\tilde{B}, p)$ if and only if $y = (y_k) \in \ell(p)$, where the sequences $x = (x_k)$ and $y = (y_k)$ are connected with the relation (2). Now, we may begin with the following theorem without proof which is essential in the text:

Now, we may begin with the following theorem without proof which is essential in the text.

Theorem 1 $\ell(\tilde{B}, p)$ is a complete linear metric space paranormed by the paranorm $h(x) = (\sum_k |s_{k-1}x_{k-1} + r_kx_k|^{p_k})^{1/M}$, where $M = \max\{1, \sup p_k\}$ and $0 < p_k \le H < \infty$ for all $k \in \mathbb{N}$.

Therefore, one can easily check that the absolute property does not hold on the space $\ell(\widetilde{B}, p)$, that is $h(x) \neq h(|x|)$; where $|x| = (|x_k|)$. This says that $\ell(\widetilde{B}, p)$ is the sequence space of non-absolute type.

Theorem 2 Convergence in $\ell(\tilde{B}, p)$ is strictly stronger than coordinatewise convergence, but the converse is not true.

A sequence space λ with a linear topology is called a *K*-space provided each of the maps $p_i : \lambda \to \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous for all $i \in \mathbb{N}$; where \mathbb{C} denotes the complex field. A *K*-space λ is called an *FK*-space provided λ is complete linear metric space. An *FK*-space whose topology is normable is called a *BK*-space. Now, we may give the following:

Theorem 3 $\tilde{\ell}_p$ is the linear space under the coordinatewise addition and scalar multiplication which is the BK-space with the norm $||x|| := (\sum_k |s_{k-1}x_{k-1} + r_kx_k|^p)^{1/p}$, where $1 \le p < \infty$.

With the notation of (2), define the transformation T from $\ell(\tilde{B}, p)$ to $\ell(p)$ by $x \mapsto y = Tx$. Since T is a linear bijection, we have

Corollary 4 The sequence space $\ell(\widetilde{B}, p)$ of non-absolute type is linearly isomorphic to the space $\ell(p)$, where 0 < 0 $p_k \leq H < \infty$ for all $k \in \mathbb{N}$.

Theorem 5 The space $\ell(\widetilde{B}, p)$ has AK.

Since, it is known that the matrix domain λ_A of a sequence space λ has a basis if and only if λ has a basis whenever $A = (a_{nk})$ is a triangle (cf. [16, Remark 2.4]), we have:

Corollary 6 Let $0 < p_k \le H < \infty$ and $\alpha_k = \{B(\tilde{r}, \tilde{s})x\}_k$ for all $k \in \mathbb{N}$. Define the sequence $b^{(k)}(r, s) = \{b_n^{(k)}(r, s)\}_{n \in \mathbb{N}}$ of the elements of the space $\ell(\widetilde{B}, p)$ by $b_n^{(k)} := \begin{cases} \frac{(-1)^{n-k}}{r_n} \prod_{j=k}^{n-1} \frac{s_j}{r_j} & , & 0 \le k \le n, \\ 0 & , & k > n, \end{cases}$ for every fixed $k \in \mathbb{N}$. Then, the sequence $\{b_{(k)}^{(k)}(r,s)\}_{k\in\mathbb{N}}$ is a basis for the space $\ell(\widetilde{B}, p)$ and any $x \in \ell(\widetilde{B}, p)$ has a unique representation of the form

 $x := \sum_k \alpha_k b^{(k)}.$

THE α -, β - AND γ -DUALS OF THE SPACE $\ell(\widetilde{B}, p)$

In this section, we give the theorems determining the α -, β - and γ -duals of the sequence space $\ell(\tilde{B}, p)$ of non-absolute type.

The set $S(\lambda, \mu)$ defined by

$$S(\lambda,\mu) := \left\{ z = (z_k) \in w : xz = (x_k z_k) \in \mu \text{ for all } x = (x_k) \in \lambda \right\}$$
(3)

is called the *multiplier space* of the sequence spaces λ and μ . With the notation of (3), the α -, β - and γ -duals of a sequence space λ , which are respectively denoted by λ^{α} , λ^{β} and λ^{γ} , are defined by

$$\lambda^{\alpha} := S(\lambda, \ell_1), \quad \lambda^{\beta} := S(\lambda, cs) \text{ and } \lambda^{\gamma} := S(\lambda, bs)$$

Theorem 7 Define the sets $S_1(p)$ and $S_2(p)$ by

$$S_{1}(p) = \bigcup_{B>1} \left\{ a = (a_{k}) \in w : \sup_{N \in F} \sum_{k} \left| \sum_{n \in N} \frac{(-1)^{n-k}}{r_{n}} \prod_{j=k}^{n-1} \frac{s_{j}}{r_{j}} a_{n} B^{-1} \right|^{p_{k}'} < \infty \right\},$$

$$S_{2}(p) = \left\{ a = (a_{k}) \in w : \sup_{N \in F} \sup_{k \in \mathbb{N}} \left| \sum_{n \in N} \frac{(-1)^{n-k}}{r_{n}} \prod_{j=k}^{n-1} \frac{s_{j}}{r_{j}} a_{n} \right|^{p_{k}} < \infty \right\}.$$

Then, $\{\ell(\widetilde{B}, p)\}^{\alpha} = \begin{cases} S_1(p) &, 1 < p_k \leq H < \infty \text{ for all } k \in \mathbb{N}, \\ S_2(p) &, 0 < p_k \leq 1 \text{ for all } k \in \mathbb{N}. \end{cases}$

Theorem 8 Define the sets $S_3(p)$, $S_4(p)$ and $S_5(p)$ by

$$S_{3}(p) = \bigcup_{B>1} \left\{ a = (a_{k}) \in w : \sup_{n} \sum_{k} \left| \sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k} B^{-1} \right|^{p_{k}'} < \infty \right\}$$

$$S_{4}(p) = \left\{ a = (a_{k}) \in w : \sum_{i=0}^{\infty} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k} < \infty \right\},$$

$$S_{5}(p) = \left\{ a = (a_{k}) \in w : \sup_{n,k \in \mathbb{N}} \left| \sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{i+k} \right|^{p_{k}} < \infty \right\}.$$

 $Then, \ \{\ell(\widetilde{B},p)\}^{\beta} = \left\{ \begin{array}{ll} S_3(p) \cap S_4(p) &, \quad 1 < p_k \leq H < \infty \ for \ all \ k \in \mathbb{N}, \\ S_4(p) \cap S_5(p) &, \quad 0 < p_k \leq 1 \ for \ all \ k \in \mathbb{N}. \end{array} \right.$

Theorem 9 $\{\ell(\widetilde{B},p)\}^{\gamma} = \begin{cases} S_3(p) &, 1 < p_k \leq H < \infty \text{ for all } k \in \mathbb{N}, \\ S_5(p) &, 0 < p_k \leq 1 \text{ for all } k \in \mathbb{N}. \end{cases}$

MATRIX TRANSFORMATIONS ON THE SEQUENCE SPACE $\ell(\widetilde{B}, p)$

In this section, we characterize the classes $(\ell(\tilde{B}, p) : \ell_{\infty}), (\ell(\tilde{B}, p) : f)$ and $(\ell(\tilde{B}, p) : c)$ of matrix transformations. We consider only the case $1 < p_k \le H < \infty$ and leave the case $0 < p_k \le 1$ to the reader because of it can be proved in the similar way.

We write for brevity that $\widetilde{a}_{nk} = \sum_{j=k}^{\infty} \frac{1}{r} \left(\frac{-s}{r}\right)^{j-k} a_{nj}$ for all $k, n \in \mathbb{N}$.

Theorem 10 Let $A = (a_{nk})$ be an infinite matrix. Then, the following statements hold:

(i) Let $1 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(\widetilde{B}, p) : \ell_{\infty})$ if and only if and there exists an integer M > 1 such that

$$\sup_{n \in \mathbb{N}} \sum_{k} \left| \sum_{i=0}^{n-k} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{n,i+k} B^{-1} \right|^{p_{k}^{'}} < \infty,$$
(4)

$$\sum_{i} \frac{(-1)^{i}}{r_{i+k}} \prod_{j=k}^{i+k-1} \frac{s_{j}}{r_{j}} a_{n,i+k} < \infty.$$
(5)

(ii) Let $0 < p_k \le 1$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(\widetilde{B}, p) : \ell_{\infty})$ if and only if the condition (5) holds

$$\sup_{n,k\in\mathbb{N}}\left|\sum_{i=0}^{n-k}\frac{(-1)^{i}}{r_{i+k}}\prod_{j=k}^{i+k-1}\frac{s_{j}}{r_{j}}a_{n,i+k}\right|^{p_{k}}<\infty.$$
(6)

Theorem 11 Let the entries of the matrices $E = (e_{nk})$ and $F = (f_{nk})$ are connected with the relation

$$e_{nk} := s_{k-1} f_{n,k-1} + r_k f_{nk} \quad or \quad f_{nk} := \sum_{i=k}^{\infty} \frac{(-1)^i}{r_i} \prod_{j=k}^{i-1} \frac{s_j}{r_j} e_{ni}$$
(7)

for all $k, n \in \mathbb{N}$. Then, $E \in (\ell(\widetilde{B}, p) : f)$ if and only if $F \in (\ell(p) : f)$ and $F^n \in (\ell(p) : c)$ for every fixed $n \in \mathbb{N}$, where $F^n = (f_{mk}^{(n)})$ with $f_{mk}^{(n)} := \begin{cases} \sum_{i=k}^{m} \frac{(-1)^i}{r_i} \prod_{j=k}^{i-1} \frac{s_j}{r_j} e_{ni} & , & 0 \le k \le m, \\ 0 & , & k > m, \end{cases}$ for all $m, k \in \mathbb{N}$.

Theorem 12 Let $0 < p_k \le H < \infty$ for all $k \in \mathbb{N}$. Then, $A \in (\ell(\widetilde{B}, p) : c)$ if and only if (4)-(6) hold and $\lim_{n\to\infty} \widetilde{a}_{nk} = \alpha_k$ for every fixed $k \in \mathbb{N}$.

SOME PROPERTIES OF THE SPACE $\ell(\widetilde{B}, p)$

Among many geometric properties, the rotundity of Banach spaces is one of the most important topics in functional analysis. For details, the reader may refer to [12], [14] and [23]. In this section, we characterize the rotundity of the space $\ell(\tilde{B}, p)$ and emphasize some results related to this concept.

By S(X) and B(X), we denote the unit sphere and unit ball of a Banach space X, respectively. A point $x \in S(X)$ is called an *extreme point* if 2x = y + z implies y = z for all $y, z \in S(X)$.

A Banach space X is said to be rotund (strictly convex) if every point of S(X) is an extreme point.

Theorem 13 The modular σ_p on $\ell(\widetilde{B}, p)$ satisfies the following properties with $p_k \ge 1$ for all $k \in \mathbb{N}$

(i) If
$$0 < \alpha \leq 1$$
, then $\alpha^M \sigma_p(\frac{x}{\alpha}) \leq \sigma_p(x)$ and $\sigma_p(\alpha x) \leq \alpha \sigma_p(x)$

(*ii*) If $\alpha \geq 1$, then $\sigma_p(x) \leq \alpha^M \sigma_p(\frac{x}{\alpha})$.

(iii) If $\alpha \geq 1$, then $\sigma_p(x) \leq \alpha \sigma_p(\frac{x}{\alpha})$.

Theorem 14 For any $x \in \ell(\widetilde{B}, p)$, we have

- (*i*) If ||x|| < 1, then $\sigma_p(x) \le ||x||$,
- (*ii*) If ||x|| > 1, then $\sigma_p(x) \ge ||x||$,
- (*iii*) ||x|| = 1 *if and only if* $\sigma_p(x) = 1$ *,*
- (*iv*) ||x|| < 1 *if and only if* $\sigma_p(x) < 1$,
- (*v*) ||x|| > 1 *if and only if* $\sigma_p(x) > 1$.

Theorem 15 $\ell(\widetilde{B}, p)$ is a Banach space with Luxemburg norm.

REFERENCES

- 1. Z.U. Ahmad, Mursaleen, *Köthe-Toeplitz duals of some new sequence spaces and their matrix maps*, Publ. Inst. Math. (Beograd) **42**(1987), 57–61.
- 2. B. Altay, F. Başar, On the Paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math. 26(5)(2002), 701–715.
- 3. B. Altay, F. Başar, Some paranormed Riezs sequence spaces of non-absolute type, Southeast Asian Bull. Math. **30**(5)(2006), 591–608.
- B. Altay, F. Başar, Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl. 319(2)(2006), 494–508.
- 5. B. Altay, F. Başar, Generalisation of the sequence space $\ell(p)$ derived by weighted mean, J. Math. Anal. Appl. **330**(1)(2007), 174–185.
- 6. B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl. **336**(1)(2007), 632–645.
- 7. C. Aydın, F. Başar, Some new paranormed sequence spaces, Inform. Sci. 160(1-4)(2004), 27-40.
- C. Aydın, F. Başar, Some generalisations of the sequence space a^r_p, Iran. J. Sci. Technol. Trans. A, Sci. 30(2006), No. A2, 175–190.
- 9. F. Başar, Infinite matrices and almost boundedness, Boll. Un. Mat. Ital. (7)6(3)(1992), 395-402.
- 10. F. Başar, B. Altay, Matrix mappings on the space bs(p) and its α -, β and γ -duals, Aligarh Bull. Math. **21**(1)(2002), 79–91. 11. F. Başar, B. Altay, M. Mursaleen, Some generalizations of the space bv_p of p-bounded variation sequences, Nonlinear Anal.
- 68(2)(2008), 273–287.
 12. S. Chen, *Geometry of Orlicz spaces*, Dissertationes Math. 356(1996), 1–224.
- B. Choudhary, S.K. Mishra, On Köthe-Toeplitz duals of certain sequence spaces and their matrix transformations, Indian J. Pure Appl. Math. 24(5)(1993), 291–301.
- 14. J. Diestel, Geometry of Banach spaces- Selected Topics, Springer-Verlag, 1984.
- 15. K. -G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180(1993), 223–238.
- 16. A. Jarrah, E. Malkowsky, BK spaces, bases and linear operators, Rendiconti Circ. Mat. Palermo II 52(1990), 177–191.
- 17. H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24(2)(1981), 169–176.
- 18. M. Kirişçi, F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl. **60**(5)(2010), 1299–1309.
- 19. C.G. Lascarides, I. J. Maddox, *Matrix transformations between some classes of sequences*, Proc. Camb. Phil. Soc. **68**(1970), 99–104.
- 20. G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948) 167-190.
- 21. I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford (2)18(1967), 345–355.
- 22. I.J. Maddox, Paranormed sequence spaces generated by infinite matrices, Proc. Camb. Phil. Soc. 64(1968), 335-340.
- 23. L. Maligranda, Orlicz Spaces and Interpolation, Inst. Math. Polish Academy of Sciences, Poznan, 1985.
- 24. H. Nakano, Modulared sequence spaces, Proc. Japan Acad. 27(2)(1951), 508-512.
- 25. S. Simons, The sequence spaces $\ell(p_v)$ and $m(p_v)$, Proc. London Math. Soc. (3), 15(1965), 422–436.
- 26. A. Wilansky, *Summability through Functional Analysis*, Nort-Holland Mathematics Studies, 85, Amsterdam-New York-Oxford, 1984.