On The First Fundamental Theorem for Special Dual Orthogonal Group $S O(2, D)$ And its Application to Dual Bezier Curves

M.Incesu ${ }^{1}$, O. Gursoy ${ }^{2}$
${ }^{1}$ Department of Mathematics Education, Mus Alparslan University, Mus, Turkey ${ }^{2}$ Department of Mathematics,Maltepe University, Istanbul, Turkey

Abstract

Let D be set of dual numbers. In this work we study the first fundamental theorem for special dual orthogonal transformations group $S O(n, D)$ in case of $n=2$. Then our getting results compared the special orthogonal transformations group $S O(4, R)$ in R^{4} because D^{2} is isomorph to R^{4} So we showed that the minimal conditions of the dual vectors are more less than minimal conditions of real vectors.

References

[1] H. Weyl, The Classical Groups Their Invariants and Representations, 2 nd ed.,with suppl., Princeton, Princeton University Press, 1946.
[2] H.H.Hacisalihoglu, Hareket GHeometrisi ve Kuaterniyonlar Teorisi, Gazi niversitesi Fen Edebiyat Fakltesi Yaynlar, Ankara 1983.
[3] Dj. Khadjiev, An Application of the Invariant theory to the Differential Geometry of Curves, Fan, Tahkent, 1988. (in Russian)
[4] Dj. Khadjiev, Some Questions in Theory of Vector Invariants, Math. USSR-Sbornic, 1,3 (1967), 383-396.
[5] M.Incesu, The Complete System of Point Invariants in the Similarity Geometry, Ph.D. Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2008.
[6] M. Incesu and O. Gursoy, The similarity Invariants of Bezier Curves and Surfaces, XX. th National Mathematics Symposium, Ataturk University, 03-06 September 2007, Erzurum.
[7] I. Oren, Invariants of Points for the Orthogonal Group $O(3,1)$, Ph.D. Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2007.
[8] Y. Sagiroglu,Affine Diferential Invariants of Parametric Curves, Ph.D. Thesis, Karadeniz Technical University, Graduate School of Natural and Applied Sciences, 2002.
[9] A. Schrijver, Tensor Subalgebras and First Fundamental Theorems in Invariant Theory, Journal of Algebra, 319 (2008),1305-1319.

