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Study of an inverse problem that models the detection of corrosion in metalic plate whose lower part is embedded
SAIDMohamed Said*

Laboratoire LMA University of Kasdi Merbah Faculty of Sciences and technology Ouargla, 30000 Ouargla  Algeria
Abstract

In this work, we will study an inverse problem to determine corrosion in an inaccessible location of a metalic plate. Our study area is inside the plate metalic plate whose lower part is embedded therefore inacssecible. We will perform measurements on the upper part of the plate, which is not in contact with the ground. For this, we will send an electric field on this part and take measurements. This problem is modeled by a Laplace problem with mixed presence of an unknown term in the boundary conditions this term is an unknown function which can take several forms. It is this function that we will detect the presence or absence of corrosion inside the tube and we will then follow our steps to the top edge of the field information on the evolution of this corrosion. We will first formulate our problem which is an inverse problem and we will make a theoretical study and we will that this problem has a unique solution also this solution is stable. After, we will solve this problem by constructing an iterative algorithm which gives problems that will cross a series of impedance functions which determines the rate of corrosion. Finally we study the convergence and we will then make a numerical application
© 2012 Published by Elsevier B.V.
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1. Introduction
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is the border of 
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. The boundary 
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 is decomposed into four disjoint open 
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we assume that 
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 is the part embedded of 
[image: image11.wmf]W

, therefore inacssecible, then the boundary value on 
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 is unknown. The electric potential u satisfies the foll owingdifferential equation 
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where the Dirichlet and Neumann value on 
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 of the electric potential u are known and are  given 
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Where 
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are two functions given in 
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 are known, we can easily solve the problem (1)-(2). The inaccessible part of the border is 
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 that is supposed to be corroded, the appearance of any corrosion on 
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Our problem is :Find the fuctions 
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 and 
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 solution of the following problem:
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Where  
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To solve the prolem (4), we will construct an algorithm that gives a good approximation of the function 
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. Finally we make a numerical application by giving a concrete example.

2-Position of the Problem
In general the problems such as: Find a function u such that:
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Where 
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 is a bounded open in 
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Indeed: We can for example apply the Lax Milgram theorem and we deduce that: the problem (6)  .   admit a unique solution in  
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But if the open 
[image: image43.wmf]W

 is convex, we show in[] that the problem (6) has a solution in at least in space 
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The resolution of our prpoblem will made in several sreps.

 First step  We solve the problem (1)-(2), and from the boundary values of this problem, ​​we want

to determine the boundaty values functions in (4), and therefore we determine the impedance function ( given by  the formula (5) 

 Second step: Construction of an iterative algorithm of resolution of the problem (4)
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