Abdullah Çavuş and Mehmet Kunt

 $cavus@ktu.edu.tr,\ mkunt@ktu.edu.tr$

Department of Mathematics, Karadeniz Technical University, Trabzon, Turkey

Abstract

Let \mathbb{H} be a complex Banach space, \mathbb{T} be the unit circle $\{z \in \mathbb{C} : |z| = 1\}$, SO(2) be the group of all rotations of \mathbb{T} , $GL(\mathbb{H})$ be group of all invertible bounded linear operators on \mathbb{H} , $\alpha : SO(2) \to GL(\mathbb{H})$ be a continuous linear representation, $x \in \mathbb{H}$. For all $n \in \mathbb{Z}$, *n*-th Fourier coefficient of x with respect to the α is defined by

$$P_n(x) = \frac{1}{2\pi} \int_{\mathbb{T}} e^{-int} \alpha(t)(x) dt$$

and the Fourier series of x with respect to the α is defined by

$$\sum_{n=-\infty}^{+\infty} P_n(x). \tag{1}$$

The convergence of this series and some properties of $P_n(x)$ are investigated in [5]. In this work, a characterization of compactness in Banach space \mathbb{H} is given by means of Fourier coefficients $P_n(x)$. One of the main results is as follows:

Theorem :Suppose that $\dim H_n < +\infty$ for all $n \in \mathbb{Z}$. Then a closed subset $A \subset \mathbb{H}$ is compact if and only if for any $\varepsilon > 0$ there exists a natural number $N(\varepsilon)$ such that $\|\frac{n}{n+1}\sigma_n(x) - x\| < \varepsilon$ for all $x \in A$ and $n \ge N(\varepsilon)$.

Where, for all $n \in \mathbb{N} \cup \{0\}$, $\sigma_n(.) : \mathbb{H} \to \mathbb{H}$ is a linear bounded operator which is defined by

$$\sigma_n(x) = \frac{1}{n+1} \sum_{k=0}^n S_k(x)$$

for all $x \in \mathbb{H}$, $S_k(x)$ is the k-th partial sum of (1) for all $k \in \mathbb{N} \cup \{0\}$ and

$$H_n := \{ x \in \mathbb{H} : \alpha(t)(x) = e^{int}x, \forall t \in \mathbb{T} \}$$

for all $n \in \mathbb{Z}$.

References

 Edwards R. E., Fourier Series : A Modern Introduction, Springer-Verlag, Berlin/Heydelberg/New York, 1982.

[2] Kislyakov S. V., Classical themes of Fourier analysis, Commutative harmonic analysis I, General survey, Classical aspects, Encycl. Math. Sci., 15, 113-165 1991.

[3] Schechter M., Principles of Functional Analysis, Graduate Studies in Mathematics, vol. 36, Providence, R. I. American Mathematical Society, (AMS), 2001.

[4] Khadjiev Dj., Çavuş A., The imbedding theorem for continuous linear representation of the rotation group of a circle in Banach spaces, Dokl. Acad. Nauk of Uzbekistan, N 7, 8-11, 2000.

[5] Khadjiev Dj., Çavuş A., Fourier series in Banach spaces, Inverse and Ill-Posed Problems Series, Ill-Posed and Non-Classical Problems of Mathematical Physics and Analysis, Proceedings of the International Conference, Samarcand, Uzbekistan, Editor-in-Chief: M. M. Lavrent'ev, VSP, Utrecht-Boston, 71-80, 2003.

[6] Khadjiev Dj., The widest continuous integral, J. Math. Anal. Appl. 326, 1101-1115, 2007.

Acknowledgement. This work was supported by the Commission of Scientific Research Projects of Karadeniz Technical University, Project number: 2010.111.3.1.