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Abstract

This paper considers the following operator

Au(t, x) = −a11(t, x)utt(t, x)− a22(t, x)uxx(t, x) + σu(t, x),

defined over the region R+ × R with the boundary condition u(0, x) = 0, x ∈ R. Here, the coefficients

aii(t, x), i = 1, 2 are continuously differentiable and satisfy the uniform ellipticity

a211(t, x) + a222(t, x) ≥ δ > 0,

and σ > 0. It investigates the structure of the fractional spaces generated by this operator. Moreover,

the positivity of the operator in Hölder spaces is proved.
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