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Abstract

For solving nonlinear stiff initial value problems, we develop an improved error correction method (IECM) which
originates from the error corrected Euler methods (ECEM) recently developed by the authors (see [17, 18]) and
reduces the computational cost and further enhances the stability for the ECEM. We use the stabilized cubicC1-spline
collocation method instead of the Chebyshev collocation method used in ECEM for solving the asymptotic linear
ODE for the difference between the Euler polygon and the true solution. It isproved that IECM isA-stable, a semi-
implicit one-step method, and of order 4 with only one evaluation of the Jacobian at each integration step. Also,
we use the iteration process of the Lobatto IIIA method developed by [13] for solving the induced matrix system.
It is shown that this iteration process does not require suchthe nonlinear function evaluation as the implicit method
does and hence it reduces the numerical computational cost efficiently. Numerical evidence is provided to support the
theoretical results with several stiff problems.
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[23] E. Schäfer, A new approach to explain the ‘high irradiance responses’ ofphotomorphogenesis on the basis of phytochrome, J. Math. Biology.

2 (1975) 41–56.
[24] J.G. Verwer, Gauss-Seidel iteration for stiff odes from chemical kinetics, SIAM J. Sci. Comput. 15 (1994) pp. 1243–1250.
[25] X.Y. Wu, J.L. Xia, Two low accuracy methods for stiff systems, Appl. Math. Comput. 123 (2001) pp. 141-153.


