The approximate solutions of linear Goursat Problems via Homotopy Analysis Method

Subject Applied Mathematics
Title The approximate solutions of linear Goursat Problems via Homotopy Analysis Method
Author(s) Aytekin Eryılmaz, Musa Başbük and HüseyinTuna
Keywords Homotopy analysis method, lineer Goursat problems, series solution, numerical solution.
Abstract

In this study we investigate the linear Goursat problems that arise in linear partial di¤erential equa- tions with mixed derivatives. The standart form of Goursat Problem is given by uxt = f(x; t; u; ux; ut); 0 6 x 6 a; 0 6 t 6 b; u (x; 0) = g(x); u(0; t) = h(t); u(0; 0) = g(0) = h(0): The aim of this work is to present an e¢ cient numerical procedure, namely Homotopy Analysis Method, for solving homogeneous and inhomogeneous linear Goursat problems. The reliability and e¢ ciency of the proposed method are demonstrated by some numerical examples and performed on the computer algebraic system Mathematica 7.