A Fuzzy Approach to Multi Objective Multi Echelon Supply Chain

Subject Applied Mathematics
Title A Fuzzy Approach to Multi Objective Multi Echelon Supply Chain
Author(s) B. Ahlatcioglu Ozkok, S. Ercan, E. Budak
Keywords Fuzzy Decision making, Supply Chain, AHP, Multi-objective Linear Programming.
Abstract

Recent times, companies are being forced by hard marketing conditions to make significant and strategic decisions on their supply chains. In this context, companies are trying to optimize supply chains towards customer demands and trying to prevent costs that caused by number of inactive facilities. In this study, by using AHP we make decision about potential establishment of a number of potential warehouses and distributions centers at regions to be selected from a set of possible candidates with certain possibilities of customer demands in the supply chain network of a company that is importing and exporting cleaning materials. The proposed model attempts to simultaneously minimize total cost and maximizing rating candidate locations using mixed integer linear programming. To obtain solution fuzzy decision making method is used and numerical example is illustrated.

A Fuzzy Max-Min Approach to Multi Objective, Multi Echelon Closed Loop Supply Chain

Subject Applied Mathematics
Title A Fuzzy Max-Min Approach to Multi Objective, Multi Echelon Closed Loop Supply Chain
Author(s) Beyza AHLATCIOGLU OZKOK, Elif BUDAK, Sinan ERCAN
Keywords Fuzzy Decision making,Multi Echelon Closed Loop Supply Chain, Multi-objective Linear Programming.
Abstract

In today’s competitive markets, optimizing the process of delivering products from suppliers of raw materials to the customers for the firms formalizes an important problem in the literature. Increasingly contaminated world and limited sources of energy in recent years are regarded, it is inevitable for the mathematical models of any supply chain to have an environmentalist perspective. Hence, closed loop supply chain method has an increasing importance. In this study, a multi-objective linear model is given for the multi-echelon closed loop supply chain and the solution is obtained by utilizing Zimmermann’s “min” operator with a fuzzy approach in which the minimum satisfactions of objectives are maximized. The model is to determine the locations of facilities and distribution quantity on the network regarding three objective functions, which are; minimizing time and cost, maximizing rating.