New generalized hyperbolic functions to find exact solution of the nonlinear partial

Subject Applied Mathematics
Title New generalized hyperbolic functions to find exact solution of the nonlinear partial
Author(s) Yusuf Pandir and Halime Ulusoy
Keywords Generalized hyperbolic function, Generalized hyperbolic function transformation, Soliton solutions
Abstract

In this article, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized hyperbolic function transformation) to construct new exact solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation. We obtain abundant families of new exact solutions of the equation and analyze the properties of this by taking different parameter values of the generalized hyperbolic functions. As a result, we find that these parameter values and the region size of the independent variables affect some solution structure. These solutions may be useful to explain some physical phenomena.